Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067307    DOI: 10.1088/1674-1056/24/6/067307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Stability of conductance oscillations in carbon atomic chains

Yu Jing-Xin (于景新), Hou Zhi-Wei (侯志伟), Liu Xiu-Ying (刘秀英)
College of Science, Henan University of Technology, Zhengzhou 450001, China
Abstract  The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green's function method combined with density functional theory. Regular even–odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current–voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided.
Keywords:  electronic transport      density functional theory      non-equilibrium Green's function      carbon atomic chains  
Received:  20 November 2014      Revised:  05 January 2015      Accepted manuscript online: 
PACS:  73.63.Rt (Nanoscale contacts)  
  61.46.-w (Structure of nanoscale materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, and 51201059), the Priority Scientific and Technological Project of Henan Province, China (Grant No. 14A140027), the School Fund (Grant No. 2012BS055), and the Plan of Natural Science Fundamental Research of Henan University of Technology, China (Grant No. 2014JCYJ15).
Corresponding Authors:  Yu Jing-Xin     E-mail:  j.x.yu@qq.com
About author:  73.63.Rt; 61.46.-w; 71.15.Mb

Cite this article: 

Yu Jing-Xin (于景新), Hou Zhi-Wei (侯志伟), Liu Xiu-Ying (刘秀英) Stability of conductance oscillations in carbon atomic chains 2015 Chin. Phys. B 24 067307

[1] Beck W, Niemer B and Wieser M 1993 Angew. Chem. Int. Ed. Engl. 32 923
[2] Schumm J S, Pearson D L and Tour J M 1994 Angew. Chem. Int. Ed. Engl. 33 1360
[3] Rinzler A G, Hafner J H and Nikolaev P 1995 Science 269 1550
[4] Yazdani A, Eigler D M and Lang N D 1996 Science 272 1921
[5] Lang N D and Avouris P 1998 Phys. Rev. Lett. 81 3515
[6] Lagow R J, Kampa J J, Wei H C, Battle S L, Genge J W, Laude D A, Harper C J, Bau R, Stevens R C, Haw J F and Munson E 1995 Science 267 362
[7] Derycke V, Soukiassian P, Mayne A, Dujardin G and Gautier J 1998 Phys. Rev. Lett. 81 5868
[8] Roth G and Fischer H 1996 Organometallics 15 5766 and references therein
[9] Meyer J C, Girit C O, Crommie M F and Zettl A 2008 Nature 454 319
[10] Jin C L, Peng H, Suenaga L and Iijima K S 2009 Phys. Rev. Lett. 102 205501
[11] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 967 2
[12] Khoo K H, Neaton J B, Son Y W, Cohen M L and Louie S G 2008 Nano Lett. 8 2900
[13] Zanolli Z, Onida G and Charlier J C 2010 ACS Nano 4 5174
[14] Zeng M G, Shen L, Cai Y Q, Sha Z D and Feng Y P 2010 Appl. Phys. Lett. 96 042104
[15] Akdim B and Pachter R 2011 ACS Nano 5 1769
[16] Liu F T, Cheng X H, Yang F B and Chen X R 2013 Chin. Phys. Lett. 30 067302
[17] Gu C Z, Wang Q, Li J J and Xia K 2013 Chin. Phys. B 22 098107
[18] Nitzan A and Ratner M A 2003 Science 300 1384
[19] Shen L, Zeng M G, Yang S W, Zhang C, Wang X F and Feng Y P 2010 J. Am. Chem. Soc. 132 11481
[20] Lang N D and Avouris P H 2000 Phys. Rev. Lett. 84 358
[21] Zhang G P, Fang X W, Yao Y X, Wang C Z, Ding Z J and Ho K M 2011 J. Phys.: Condens. Matter 23 025302
[22] Chen W and Andreev A V 2009 Phys. Rev. B 80 085410
[23] Erdogan E, Popov I, Rocha C G, Cuniberti G, Roche S and Seifert G 2011 Phys. Rev. B 83 R041401
[24] Larade B, Taylor J, Mehrez H and Guo H 2001 Phys. Rev. B 64 075420
[25] Song B, Sanvito S and Fang H P 2010 New J. Phys. 12 103017
[26] Deng X Q, Zhang Z H, Zhou J C, Qiu M and Tang G P 2010 J. Chem. Phys. 132 124107
[27] Pi K, Han W, McCreary K M, Swartz A G, Li Y and Kawakami R K 2010 Phys. Rev. Lett. 104 187201
[28] Liu M J, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[29] Rocha A R, Garcia-Suarez V M, Bailey S, Lambert C, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335
[30] Rocha A R, Garcia-Suarez V M, Bailey S, Lambert C, Ferrer J and Sanvito S 2006 Phys. Rev. B 73 085414
[31] Rungger I and Sanvito S 2008 Phys. Rev. B 78 035407
[32] Kadanoff L P and Baym G 1962 Quantum Statistical Mechanics (New York: Benjamin-Cummings) p. 231
[33] Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) p. 33
[34] Kohn W and Sham L 1965 Phys. Rev. 140 A1133
[35] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Sanchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[36] Perdew J P 1986 Phys. Rev. B 33 8822
[37] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[38] Yamaguchi F, Yamada T and Yamamoto Y 1997 Solid State Commun. 102 779
[39] Lang N D 1997 Phys. Rev. Lett. 79 1357
[40] Liu H M, Li P and Zhao J W 2008 J. Chem. Phys. 129 224704
[41] Khomyakov P A and Brocks G 2006 Phys. Rev. B 74 165416
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
No Suggested Reading articles found!