Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067401    DOI: 10.1088/1674-1056/24/6/067401
RAPID COMMUNICATION Prev   Next  

Electronic structure of transition metal dichalcogenides PdTe2 and Cu0.05PdTe2 superconductors obtained by angle-resolved photoemission spectroscopy

Liu Yan (刘艳)a, Zhao Jian-Zhou (赵建洲)a, Yu Li (俞理)a, Lin Cheng-Tian (林成天)b, Hu Cheng (胡成)a, Liu De-Fa (刘德发)a, Peng Ying-Ying (彭莹莹)a, Xie Zhuo-Jin (谢卓晋)a, He Jun-Feng (何俊峰)a, Chen Chao-Yu (陈朝宇)a, Feng Ya (冯娅)a, Yi He-Mian (伊合绵)a, Liu Xu (刘旭)a, Zhao Lin (赵林)a, He Shao-Long (何少龙)a, Liu Guo-Dong (刘国东)a, Dong Xiao-Li (董晓莉)a, Zhang Jun (张君)a, Chen Chuang-Tian (陈创天)c, Xu Zu-Yan (许祖彦)c, Weng Hong-Ming (翁虹明)a, Dai Xi (戴希)a, Fang Zhong (方忠)a, Zhou Xing-Jiang (周兴江)a d
a National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany;
c Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
d Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu-intercalated form, Cu0.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mechanism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cu0.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cu0.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors.

Keywords:  transition metal dichalcogenides      PdTe2      superconductor      photoemission  
Received:  20 April 2015      Accepted manuscript online: 
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11190022), the National Basic Research Program of China (Grant Nos. 2011CB921703 and 2011CBA00110), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300).

Corresponding Authors:  Zhou Xing-Jiang     E-mail:  XJZhou@aphy.iphy.ac.cn
About author:  74.70.-b; 74.25.Jb; 79.60.-i; 71.20.-b

Cite this article: 

Liu Yan (刘艳), Zhao Jian-Zhou (赵建洲), Yu Li (俞理), Lin Cheng-Tian (林成天), Hu Cheng (胡成), Liu De-Fa (刘德发), Peng Ying-Ying (彭莹莹), Xie Zhuo-Jin (谢卓晋), He Jun-Feng (何俊峰), Chen Chao-Yu (陈朝宇), Feng Ya (冯娅), Yi He-Mian (伊合绵), Liu Xu (刘旭), Zhao Lin (赵林), He Shao-Long (何少龙), Liu Guo-Dong (刘国东), Dong Xiao-Li (董晓莉), Zhang Jun (张君), Chen Chuang-Tian (陈创天), Xu Zu-Yan (许祖彦), Weng Hong-Ming (翁虹明), Dai Xi (戴希), Fang Zhong (方忠), Zhou Xing-Jiang (周兴江) Electronic structure of transition metal dichalcogenides PdTe2 and Cu0.05PdTe2 superconductors obtained by angle-resolved photoemission spectroscopy 2015 Chin. Phys. B 24 067401

[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[3] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[4] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[5] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[6] McCarron E, Korenstein R and Wold A 1976 Mater. Res. Bull. 11 1457
[7] Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801
[8] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[9] van Smaalen S 2005 Acta Cryst. A61 51
[10] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[11] Morris R C, Coleman R V and Rajendra Bhandari 1972 Phys. Rev. B 5 895
[12] Finlayson T R 1986 Phy. Rev. B 33 2473
[13] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960
[14] Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S and Dai H J 2011 J. Am. Chem. Soc. 133 7296
[15] Soulard C, Petit P E, Deniard P, Evain M, Jobic S, Whangbo M H and Dhaussy A C 2005 J. Solid State Chem. 178 2008
[16] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[17] Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2014 arXiv: 1412.8298 [cond-mat.mtrl-sci]
[18] Lv H Y, Lu W J, Shao D F, Liu Y, Tan S G and Sun Y P 2014 arXiv: 1412.8335 [cond-mat.mes-hall]
[19] Yeh P C, Jin W, Zhang D, Liou J T, Sadowski J T, Mahboob A A, Dadap J I, Herman I P, Sutter P and Osgood R M 2015 Phys. Rev. B 91 041407
[20] Pan X C, Chen X L, Liu H M, Feng Y Q, Song F Q, Wan X G, Zhou Y H, Chi Z H, Yang Z R, Wang B G, Zhang Y H and Wang G H 2015 arXiv: 1501.07394 [cond-mat.supr-con]
[21] Duerloo KA N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
[22] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2014 Nat. Nanotechnol. 9 111
[23] Tibbals C A 1909 J. Am. Chem. Soc. 31 902
[24] Thomassen L 1929 Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie 2 349
[25] Matthias B T 1953 Phys. Rev. 90 487
[26] Matthias B T 1953 Phys. Rev. 92 874
[27] Gronvold F and Rost E 1956 Acta Chem. Scand. 10 1620
[28] Kjekshus A and Gronvold F 1959 Acta Chemica Scandinavica 13 1767
[29] Westrum E F, Kjekshus A, Gronvold F and Carlson H G 1961 J. Chem. Phys. 35 1670
[30] Medvedeva Z S, Klochko M A, Kuznetsov V G and Andreeva S N 1961 Zhurnal Neorganicheskoi Khimii 6 1737
[31] Kjekshus A and Pearson W B 1965 Canadian Journal of Physics 43 438
[32] Furuseth S, Selte K and Kjekshus A 1965 Acta Chem. Scand. 19 257
[33] Ipser H and Schuster W 1986 J. Less-Common. Met. 125 183
[34] Mallika C and Sreedharan O M 1986 J. Mater. Sci. Lett. 5 915
[35] Simic V and Marinkovic Z 1997 Materials Chemistry and Physics 47 246
[36] Roberts B W 1976 J. Phys. Chem. Ref. Data 5 581
[37] Karki A B, Browne D A and Stadler S 2012 J. Phys.: Condens. Matter 24 055701
[38] Ryan G W and Tornallyay J 1999 J. Appl. Phys. 85 6290
[39] Ryan G W and Sheils W L 2000 Phys. Rev. B 61 8526
[40] Orders P J, Liesegang J, Leckey R C G, Jenkin J G and Riley J D 1982 J. Phys. F: Met. Phys. 12 2737
[41] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[42] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology)
[43] Jobic S, Brec R and Rouxel J 1992 J. Solid State Chem. 96 169
[44] Kim W S, Chao G Y and Cabri L J 1990 J. Less-Common. Met. 162 61
[45] Myron H W 1974 Solid State Commun. 15 395
[46] Jan J P and Skriver H L 1977 J. Phys. F: Metal Phys. 7 1719
[47] Guo G Y 1986 J. Phys. C: Solid State Phys. 19 5365
[48] Ootsuki D, Pyon S, Kudo K, Nohara M, Horio M, Yoshida T, Fujimori A, Arita M, Anzai H and Namatame H 2013 J. Phys. Soc. Jpn. 82 093704
[49] Ootsuki K, Toriyama T, Kobayashi M, Pyon S, Kudo K, Nohara M, Sugimoto T, Yoshida T, Horio M, Fujimori A, Arita M, Anzai H, Namatame H, Taniguchi M, Saini N L, Konishi T, Ohta Y and Mizokawa T 2014 J. Phys. Soc. Jpn. 83 033704
[50] Ootsuki D, Toriyama T, Pyon S, Kudo K, Nohara M, Horiba K, Kobayashi M, Ono K, Kumigashira H, Noda T, Sugimoto T, Fujimori A, Saini N L, Konishi T, Ohta Y and Mizokawa T 2014 Phys. Rev. B 89 104506
[51] Zhang Y, Ye R Z, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P and Feng D L 2012 Nat. Phys. 8 371
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[11] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[12] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[13] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
No Suggested Reading articles found!