|
|
Electronic structure of transition metal dichalcogenides PdTe2 and Cu0.05PdTe2 superconductors obtained by angle-resolved photoemission spectroscopy |
Liu Yan (刘艳)a, Zhao Jian-Zhou (赵建洲)a, Yu Li (俞理)a, Lin Cheng-Tian (林成天)b, Hu Cheng (胡成)a, Liu De-Fa (刘德发)a, Peng Ying-Ying (彭莹莹)a, Xie Zhuo-Jin (谢卓晋)a, He Jun-Feng (何俊峰)a, Chen Chao-Yu (陈朝宇)a, Feng Ya (冯娅)a, Yi He-Mian (伊合绵)a, Liu Xu (刘旭)a, Zhao Lin (赵林)a, He Shao-Long (何少龙)a, Liu Guo-Dong (刘国东)a, Dong Xiao-Li (董晓莉)a, Zhang Jun (张君)a, Chen Chuang-Tian (陈创天)c, Xu Zu-Yan (许祖彦)c, Weng Hong-Ming (翁虹明)a, Dai Xi (戴希)a, Fang Zhong (方忠)a, Zhou Xing-Jiang (周兴江)a d |
a National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany;
c Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
d Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu-intercalated form, Cu0.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mechanism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cu0.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cu0.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors.
|
Received: 20 April 2015
Accepted manuscript online:
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11190022), the National Basic Research Program of China (Grant Nos. 2011CB921703 and 2011CBA00110), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). |
Corresponding Authors:
Zhou Xing-Jiang
E-mail: XJZhou@aphy.iphy.ac.cn
|
About author: 74.70.-b; 74.25.Jb; 79.60.-i; 71.20.-b |
Cite this article:
Liu Yan (刘艳), Zhao Jian-Zhou (赵建洲), Yu Li (俞理), Lin Cheng-Tian (林成天), Hu Cheng (胡成), Liu De-Fa (刘德发), Peng Ying-Ying (彭莹莹), Xie Zhuo-Jin (谢卓晋), He Jun-Feng (何俊峰), Chen Chao-Yu (陈朝宇), Feng Ya (冯娅), Yi He-Mian (伊合绵), Liu Xu (刘旭), Zhao Lin (赵林), He Shao-Long (何少龙), Liu Guo-Dong (刘国东), Dong Xiao-Li (董晓莉), Zhang Jun (张君), Chen Chuang-Tian (陈创天), Xu Zu-Yan (许祖彦), Weng Hong-Ming (翁虹明), Dai Xi (戴希), Fang Zhong (方忠), Zhou Xing-Jiang (周兴江) Electronic structure of transition metal dichalcogenides PdTe2 and Cu0.05PdTe2 superconductors obtained by angle-resolved photoemission spectroscopy 2015 Chin. Phys. B 24 067401
|
[1] |
Grüner G 1988 Rev. Mod. Phys. 60 1129
|
[2] |
Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
|
[3] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
|
[4] |
Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
|
[5] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[6] |
McCarron E, Korenstein R and Wold A 1976 Mater. Res. Bull. 11 1457
|
[7] |
Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801
|
[8] |
Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
|
[9] |
van Smaalen S 2005 Acta Cryst. A61 51
|
[10] |
Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
|
[11] |
Morris R C, Coleman R V and Rajendra Bhandari 1972 Phys. Rev. B 5 895
|
[12] |
Finlayson T R 1986 Phy. Rev. B 33 2473
|
[13] |
Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960
|
[14] |
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S and Dai H J 2011 J. Am. Chem. Soc. 133 7296
|
[15] |
Soulard C, Petit P E, Deniard P, Evain M, Jobic S, Whangbo M H and Dhaussy A C 2005 J. Solid State Chem. 178 2008
|
[16] |
Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
|
[17] |
Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2014 arXiv: 1412.8298 [cond-mat.mtrl-sci]
|
[18] |
Lv H Y, Lu W J, Shao D F, Liu Y, Tan S G and Sun Y P 2014 arXiv: 1412.8335 [cond-mat.mes-hall]
|
[19] |
Yeh P C, Jin W, Zhang D, Liou J T, Sadowski J T, Mahboob A A, Dadap J I, Herman I P, Sutter P and Osgood R M 2015 Phys. Rev. B 91 041407
|
[20] |
Pan X C, Chen X L, Liu H M, Feng Y Q, Song F Q, Wan X G, Zhou Y H, Chi Z H, Yang Z R, Wang B G, Zhang Y H and Wang G H 2015 arXiv: 1501.07394 [cond-mat.supr-con]
|
[21] |
Duerloo KA N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
|
[22] |
Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2014 Nat. Nanotechnol. 9 111
|
[23] |
Tibbals C A 1909 J. Am. Chem. Soc. 31 902
|
[24] |
Thomassen L 1929 Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie 2 349
|
[25] |
Matthias B T 1953 Phys. Rev. 90 487
|
[26] |
Matthias B T 1953 Phys. Rev. 92 874
|
[27] |
Gronvold F and Rost E 1956 Acta Chem. Scand. 10 1620
|
[28] |
Kjekshus A and Gronvold F 1959 Acta Chemica Scandinavica 13 1767
|
[29] |
Westrum E F, Kjekshus A, Gronvold F and Carlson H G 1961 J. Chem. Phys. 35 1670
|
[30] |
Medvedeva Z S, Klochko M A, Kuznetsov V G and Andreeva S N 1961 Zhurnal Neorganicheskoi Khimii 6 1737
|
[31] |
Kjekshus A and Pearson W B 1965 Canadian Journal of Physics 43 438
|
[32] |
Furuseth S, Selte K and Kjekshus A 1965 Acta Chem. Scand. 19 257
|
[33] |
Ipser H and Schuster W 1986 J. Less-Common. Met. 125 183
|
[34] |
Mallika C and Sreedharan O M 1986 J. Mater. Sci. Lett. 5 915
|
[35] |
Simic V and Marinkovic Z 1997 Materials Chemistry and Physics 47 246
|
[36] |
Roberts B W 1976 J. Phys. Chem. Ref. Data 5 581
|
[37] |
Karki A B, Browne D A and Stadler S 2012 J. Phys.: Condens. Matter 24 055701
|
[38] |
Ryan G W and Tornallyay J 1999 J. Appl. Phys. 85 6290
|
[39] |
Ryan G W and Sheils W L 2000 Phys. Rev. B 61 8526
|
[40] |
Orders P J, Liesegang J, Leckey R C G, Jenkin J G and Riley J D 1982 J. Phys. F: Met. Phys. 12 2737
|
[41] |
Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
|
[42] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology)
|
[43] |
Jobic S, Brec R and Rouxel J 1992 J. Solid State Chem. 96 169
|
[44] |
Kim W S, Chao G Y and Cabri L J 1990 J. Less-Common. Met. 162 61
|
[45] |
Myron H W 1974 Solid State Commun. 15 395
|
[46] |
Jan J P and Skriver H L 1977 J. Phys. F: Metal Phys. 7 1719
|
[47] |
Guo G Y 1986 J. Phys. C: Solid State Phys. 19 5365
|
[48] |
Ootsuki D, Pyon S, Kudo K, Nohara M, Horio M, Yoshida T, Fujimori A, Arita M, Anzai H and Namatame H 2013 J. Phys. Soc. Jpn. 82 093704
|
[49] |
Ootsuki K, Toriyama T, Kobayashi M, Pyon S, Kudo K, Nohara M, Sugimoto T, Yoshida T, Horio M, Fujimori A, Arita M, Anzai H, Namatame H, Taniguchi M, Saini N L, Konishi T, Ohta Y and Mizokawa T 2014 J. Phys. Soc. Jpn. 83 033704
|
[50] |
Ootsuki D, Toriyama T, Pyon S, Kudo K, Nohara M, Horiba K, Kobayashi M, Ono K, Kumigashira H, Noda T, Sugimoto T, Fujimori A, Saini N L, Konishi T, Ohta Y and Mizokawa T 2014 Phys. Rev. B 89 104506
|
[51] |
Zhang Y, Ye R Z, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P and Feng D L 2012 Nat. Phys. 8 371
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|