Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127303    DOI: 10.1088/1674-1056/ac2e5d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controllable and switchable chiral near-fields in symmetric graphene metasurfaces

Li Hu(胡莉)1,2,†, Hongxia Dai(代洪霞)1,2, Fayin Cheng(程发银)1,2, and Yuxia Tang(唐裕霞)1,3
1 Chongqing Key Laboratory of Intelligent Perception and BlockChain Technology, Chongqing Technology and Business University, Chongqing 400067, China;
2 Department of Applied Physics, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, China;
3 Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing 400044, China
Abstract  A strong chiral near-field plays significant roles in the detection, separation and sensing of chiral molecules. In this paper, a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region. Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light, there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude. As expected, the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets, as well as the permittivity of the substrate. Meanwhile, based on the interaction between the incident field and scattered field, the one-handed chiral near-field in the gap also could be generated by the linearly polarized light excitation. For the two cases, the handedness of the chiral near-field could be switched by the polarized direction of the incident light. These results have potential opportunities for applications in molecular detection and sensing.
Keywords:  plasmonic resonance      chiral near-field      graphene      metasurface  
Received:  21 August 2021      Revised:  27 September 2021      Accepted manuscript online:  11 October 2021
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  25.70.Ef (Resonances)  
  78.67.Wj (Optical properties of graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804035) and Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1706153).
Corresponding Authors:  Li Hu     E-mail:  huli@ctbu.edu.cn

Cite this article: 

Li Hu(胡莉), Hongxia Dai(代洪霞), Fayin Cheng(程发银), and Yuxia Tang(唐裕霞) Controllable and switchable chiral near-fields in symmetric graphene metasurfaces 2021 Chin. Phys. B 30 127303

[1] Cecconello A, Besteiro L V, Govorov A O and Willner I 2017 Nat. Rev. Mater. 2 17039
[2] Luo Y, Chi C, Jiang M, Li R, Zu S, Li Y and Fang Z 2017 Adv. Opt. Mater. 5 1700040
[3] Hao C, Xu L, Kuang H and Xu C 2020 Adv. Mater. 32 1802075
[4] Matuschek M, Singh D P, Jeong H H, Nesterov M, Weiss T, Fischer P, Neubrech F and Liu N 2018 Small 14 1702990
[5] Collins J T, Kuppe C, Hooper D C, Sibilia C, Centini M and Valev V K 2017 Adv. Opt. Mater. 5 1700182
[6] Wang X and Tang Z 2017 Small 13 1601115
[7] Ben-Moshe A, Maoz B M, Govorov A O and Markovich G 2013 Chem. Soc. Rev. 42 7028
[8] Chen Y, Cheng Y and Sun M 2021 J. Phys. Chem. C 125 21301
[9] Mu X, Hu L, Cheng Y, Fang Y and Sun M 2021 Nanoscale 13 581
[10] Cui L, R Li, Mu T, Wang J, Zhang W and Sun M 2021 Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 264 120283
[11] Kong X T, Khosravi Khorashad L, Wang Z and Govorov A O 2018 Nano Lett. 18 2001
[12] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hogele A, Simmel F C, Govorov A O and Liedl T 2012 Nature 483 311
[13] Fan Z and Govorov A O 2010 Nano Lett. 10 2580
[14] Kang L, Ren Q and Werner D H 2017 ACS Photon. 4 1298
[15] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N and Kadodwala M 2010 Nat. Nanotechnol. 5 783
[16] Meinzer N, Hendry E and Barnes W L 2013 Phys. Rev. B 88 041407
[17] Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai D P, Ding W, Liu A Q, Cipparrone G, Saenz J J and Qiu C W 2020 Light Sci. Appl. 9 62
[18] Lee Y Y, Kim R M, Im S W, Balamurugan M and Nam K T 2020 Nanoscale 12 58
[19] Tian X, Fang Y and Sun M 2015 Sci. Rep. 5 17534
[20] Davis T J and Hendry E 2013 Phys. Rev. B 87 085405
[21] Hu L, Dai H, Xi F and Long T 2018 Euro. Phys. J. D 72 201
[22] Schäferling M, Engheta N, Giessen H and Weiss T 2016 ACS Photon. 3 1076
[23] Schäferling M, Dregely D, Hentschel M and Giessen H 2012 Phys. Rev. X 2 031010
[24] Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y and Xu X 2017 Carbon 119 305
[25] Fu T, Chen Y, Wang T, Li H, Zhang Z and Wang L 2017 Opt. Express 25 24623
[26] Kong X T, Zhao R, Wang Z and Govorov A O 2017 Nano Lett. 17 5099
[27] Xiao S, Wang T, Liu T, Zhou C, Jiang X and Zhang J 2020 J. Phys. D:Appl. Phys. 53 503002[28] Cui L and Sun M 2021 J. Phys. Chem. C 125 22370
[29] Mu X and Sun M 2020 Materials Today Physics 14 100222
[30] Cui L, Wang J and Sun M 2021 Reviews in Physics 6 100054
[31] Stauber T, Low T and Gomez-Santos G 2018 Phys. Rev. Lett. 120 046801
[32] Shi C, He X, Peng J, Xiao G, Liu F, Lin F and Zhang H 2019 Optics and Laser Technology 114 28
[33] Ye L, Zeng F, Zhang Y and Liu Q H 2019 Carbon 148 317
[34] Zhou S, Lai P, Dong G, Li P, Li Y, Zhu Z, Guan C and Shi J 2019 Opt. Express 27 15359
[35] Hu L, Cheng F, Tang Y and Wang H 2021 Euro. Phys. J. B 94 8
[36] Wang Y, Wang Z, Wang Q, Zhou S, Han Q, Gao W, Ren K, Qi J and J Dong 2019 J. Phys. Chem. C 123 24754
[37] Stauber T, Low T and Gomez-Santos G 2020 Nano Lett. 20 8711
[38] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901
[39] Horrer A, Zhang Y, Gerard D, Beal J, Kociak Plain M J and Bachelot R 2020 Nano Lett. 20 509
[40] Hu L, Xi F, Qv L and Fang Y 2018 ACS Omega 3 1170
[41] Schäferling M, Yin X and Giessen H 2012 Opt. Expres 20 26326
[1] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[2] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[3] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[4] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[5] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[6] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[7] Integer quantum Hall effect in Kekulé-patterned graphene
Yawar Mohammadi and Samira Bahrami. Chin. Phys. B, 2022, 31(1): 017305.
[8] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[9] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[10] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[11] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[12] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[13] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[14] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[15] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
No Suggested Reading articles found!