Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096804    DOI: 10.1088/1674-1056/ac11e8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition-induced superstructures of β-Sn films with atomic-scale thickness

Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海)
Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  The ultrathin β-Sn(001) films have attracted tremendous attention owing to its topological superconductivity (TSC), which hosts Majorana bound state (MBSs) for quantum computation. Recently, β-Sn(001) thin films have been successfully fabricated via phase transition engineering. However, the understanding of structural phase transition of β-Sn(001) thin films is still elusive. Here, we report the direct growth of ultrathin β-Sn(001) films epitaxially on the highly oriented pyrolytic graphite (HOPG) substrate and the characterization of intricate structural-transition-induced superstructures. The morphology was obtained by using atomic force microscopy (AFM) and low-temperature scanning tunneling microscopy (STM), indicating a structure-related bilayer-by-bilayer growth mode. The ultrathin β-Sn film was made of multiple domains with various superstructures. Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains. The formation mechanism of these superstructures was further discussed based on the structural phase transition of β to α-Sn at the atomic-scale thickness. Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit, but also paves a way to investigate their structure-sensitive topological properties.
Keywords:  epitaxial growth      β-Sn films      bilayer-by-bilayer      superstructures      structural transition      scanning tunneling microscopy      surface energy  
Received:  13 May 2021      Revised:  09 June 2021      Accepted manuscript online:  07 July 2021
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.55.-a (Thin film structure and morphology)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.65.Cd (Superlattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674045, 61911540074, and 21622304), the Fund from the Ministry of Science and Technology of China (Grant No. 2016YFA0200700), the Strategic Priority Research Program and Key Research Program of Frontier Sciences (Chinese Academy of Sciences) (Grant Nos. XDB30000000 and QYZDB-SSW-SYS031). Zhihai Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant No. 21XNLG27).
Corresponding Authors:  Zhihai Cheng     E-mail:  zhihaicheng@ruc.edu.cn

Cite this article: 

Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海) Phase transition-induced superstructures of β-Sn films with atomic-scale thickness 2021 Chin. Phys. B 30 096804

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C and Xue Q K 2018 Nat. Phys. 14 344
[4] Falson J, Xu Y, Liao M, Zang Y, Zhu K, Wang C, Zhang Z, Liu H, Duan W, He K, Liu H, Smet J H, Zhang D and Xue Q K 2020 Science 367 1454
[5] Stühler R, Reis F, Müller T, Helbig T, Schwemmer T, Thomale R, Schäfer J and Claessen R 2020 Nat. Phys. 16 47
[6] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802
[7] Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X, Jia H Q, Zhou J M and Chen H 2015 Chin. Phys. Lett. 32 106801
[8] Fakir M S, Ahmad Z and Sulaiman K 2012 Chin. Phys. Lett. 29 126802
[9] Dong J and Ouyang G 2020 Chin. Phys. B 29 086403
[10] Ding C, Liu C, Zhang Q H, Gong G M, Wang H, Liu X Z, Meng F Q, Yang H H, Wu R, Song C L, Li W, He K, Ma X C, Gu L, Wang L L and Xue Q K 2018 Acta Phys. Sin. 67 207415 (in Chinese)
[11] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[13] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Bozovic I and Gozar A 2019 Nat. Nanotechnol. 14 44
[14] Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K and Chen L 2017 Phys. Rev. Mater. 1 021001
[15] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[16] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[17] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[18] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
[19] Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W and Li S C 2020 Nano Lett. 20 8408
[20] Shi Z Q, Li H, Yuan Q Q, Song Y H, Lv Y Y, Shi W, Jia Z Y, Gao L, Chen Y B, Zhu W and Li S C 2019 Adv. Mater. 31 1806130
[21] Xing S, Lei L, Dong H, Guo J, Cao F, Gu S, Hussain S, Pang F, Ji W, Xu R and Cheng Z 2020 Chin. Phys. B 29 096801
[22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287
[23] Du H, Sun X, Liu X, Wu X, Wang J, Tian M, Zhao A, Luo Y, Yang J, Wang B and Hou J G 2016 Nat. Commun. 7 10814
[24] Xu J P, Zhang J Q, Tian H, Xu H, Ho W and Xie M 2017 Phys. Rev. Mater. 1 061002
[25] Zhou D, Meng Q, Si N, Zhou X, Zhai S, Tang Q, Ji Q, Zhou M, Niu T and Fuchs H 2020 ACS Nano 14 2385
[26] Zhang Z M, Zhang W H and Fu Y S 2019 Acta Phys. Sin. 68 226801 (in Chinese)
[27] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[28] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[29] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[30] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B and Hou J G 2018 Nat. Mater. 17 1081
[31] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S and Gao H J 2019 Nano Lett. 19 6323
[32] Roldan Cuenya B, Doi M and Keune W 2002 Surf. Sci. 506 33
[33] Wang D T, Esser N, Cardona M and Zegenhagen J 1995 Surf. Sci. 343 31
[34] Xu Y, Tang P and Zhang S C 2015 Phys. Rev. B 92 081112
[35] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[36] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[37] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W and Xue Q K 2019 Nat. Phys. 15 1046
[38] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K and Madhavan V 2020 Science 367 104
[39] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[40] Gu Q Q, Wan S Y, Yang H and Wen H H 2018 Acta Phys. Sin. 67 207401 (in Chinese)
[41] Eisenstein J 1954 Rev. Mod. Phys. 26 277
[42] Lei C, Chen H and MacDonald A H 2018 Phys. Rev. Lett. 121 227701
[43] Li AM, Lu D, Yang X Y, Zhu Z, Wang G Y, Guan D D, Zheng H, Li Y Y, Liu C, Qian D and Jia J F 2018 Chin. Phys. Lett. 35 066802
[44] Wang L L, Ma X C, Ji S H, Fu Y S, Shen Q T, Jia J F, Kelly K F and Xue Q K 2008 Phys. Rev. B 77 205410
[45] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[46] Cornelius B, Treivish S, Rosenthal Y and Pecht M 2017 Microelectronics Reliability 79 175
[47] Mujica A, Rubio A, Munoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[48] Christensen N E and Methfessel M 1993 Phys. Rev. B 48 5797
[1] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[2] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[3] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[4] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[5] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[6] Realization of semiconducting Cu2Se by direct selenization of Cu(111)
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(11): 116802.
[7] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[8] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[9] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[10] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[11] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[12] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
[15] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[1] TAO BI-XIU, TAO BI-YOU. DYNAMICS OF PLANAR RELATIVISTIC DOMAIN WALLS[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(5): 356 -360 .
[2] Li Xiang-dong, Tan Ming-liang, Yi You-gen, Zhu Zheng-he. CALCULATION OF THE TRANSITION ENERGIES OF THE Ne-LIKE IONS WITH THE CORRECTION OF CORE POLARIZATION[J]. Chin. Phys., 2000, 9(1): 13 -18 .
[3] W. B. Cardoso, A. T. Avelar, B.Baseia, N. G. de Almeida. Total teleportation of zero- and one-photon entangled states in running waves[J]. Chin. Phys. B, 2008, 17(1): 60 -63 .
[4] Zhong Cheng-Wen, Xie Jian-Fei, Zhuo Cong-Shan, Xiong Sheng-Wei, Yin Da-Chuan. Simulation of natural convection under high magnetic field by means of the thermal lattice Boltzmann method[J]. Chin. Phys. B, 2009, 18(10): 4083 -4093 .
[5] Cao Wen-Hui, Yu Hai-Feng, Tian Ye, Yu Hong-Wei, Ren Yu-Feng, Chen Geng-Hua, Zhao Shi-Ping. Nb/Al-AlOx/Nb junctions with controllable critical current density for qubit application[J]. Chin. Phys. B, 2009, 18(11): 5044 -5046 .
[6] Jin Zhang-Ying, Shen Bai-Fei, Zhang Xiao-Mei, Wang Feng-Chao, Ji Liang-Liang. Energetic-ion generation by the combination of laser pressure and Coulomb explosion[J]. Chin. Phys. B, 2009, 18(12): 5395 .
[7] Zhang Xiao-Long, Zhang Yue-Xia, Wei Hua. Quantum secure direct communication with Greenberger--Horne--Zeilinger-type state (GHZ state) over noisy channels[J]. Chin. Phys. B, 2009, 18(2): 435 -439 .
[8] Wang Fa-Qiang, Zhang Zhi-Ming, Liang Rui-Sheng. Decoherence of two-qubit system in a non-Markovian squeezed reservoir[J]. Chin. Phys. B, 2009, 18(2): 597 -603 .
[9] Zhang Hu, Yang Bo-Jun, Liu Yu-Min, Wang Qiu-Guo, Yu Li, Zhang Xiao-Guang. Zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres[J]. Chin. Phys. B, 2009, 18(3): 1116 -1122 .
[10] Wang Jing, Enrico Arrigoni. Single-particle spectral function of the Hubbard chain: frustration induced[J]. Chin. Phys. B, 2009, 18(6): 2475 -2480 .