Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086101    DOI: 10.1088/1674-1056/ac0691
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals

Wen Cui(崔雯)1,†, De-Jun Li(李德军)1, Jin-Liang Guo(郭金良)1, Lang-Huan Zhao(赵琅嬛)1, Bing-Bing Liu(刘冰冰)2, and Shi-Shuai Sun(孙士帅)3,‡
1 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3 College of Science, Tianjin University of Technology, Tianjin 300384, China
Abstract  Different C60 crystals were synthesized by precipitation from a mixture of the good solvent m-xylene and the poor solvent isopropyl alcohol. The samples were characterized by scanning electron microscopy (SEM), Raman spectroscopy, thermogravimetric analysis, and high resolution transmission electron microscope (HRTEM). We found that the morphologies and sizes of the samples could be controlled by adjusting the volume ratio between the good and poor solvents. Especially, an unexpected short flower column-like crystal was synthesized at low ratios (from 1:6 to 1:12). Room temperature photoluminescence (PL) and HRTEM studies of the C60 crystal samples reveal that the PL efficiency of the crystals decreases with increasing crystalline order and that the disordered C60 crystals synthesized at the ratio of 1:2 show 10 times higher PL efficiency than that of pristine C60. The mechanism of the growth process of these C60 crystals was also studied by replacing the good solvents m-xylene with toluene and mesitylene.
Keywords:  C60 crystals      morphology      photoluminescence      growth process  
Received:  18 March 2021      Revised:  26 May 2021      Accepted manuscript online:  29 May 2021
PACS:  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  78.55.-m (Photoluminescence, properties and materials)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504269 and 11504267), Tianjin Natural Science Foundation (Grant No. 20JCQNJC00660), and the Program for Innovative Research in University of Tianjin (Grant No. TD13-5077).
Corresponding Authors:  Wen Cui, Shi-Shuai Sun     E-mail:  cuiwen2005xj@126.com;sssdashuai@163.com

Cite this article: 

Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅) Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals 2021 Chin. Phys. B 30 086101

[1] Komatsu K, Murata M and Murata Y 2005 Science 307 238
[2] Dresselhaus M S, Dresselhaus G and Eklund P C 1997 Carbon 35 437
[3] Minato J and Miyazawa K 2005 Carbon 43 2837
[4] Yao M G, Andersson B M, Stenmark P, Sundqvist B, Liu B B and Wagberg T 2009 Carbon 47 1181
[5] Bae E, Kim N D, Kwak B K, Park J, Lee J, Kim Y, Choi K and Yi J 2010 Carbon 48 3676
[6] Ai M, Li J, Ji Z J, Wang C H, Li R, Dai W and Chen M 2019 RSC Adv. 9 3050
[7] Liu H B, Li Y L, Jiang L, Luo H Y, Xiao S Q, Fang H J, Li H M, Zhu D B, Yu A P, Xu J and Xiang B 2002 J. Am. Chem. Soc. 124 13370
[8] Wang L, Liu B B, Yu S D, Yao M G, Liu D D, Hou Y Y, Tian C, Zou G T, Sundqvist B, You H, Zhang D K and Ma D G 2006 Chem. Mater. 18 4190
[9] Ji H X, Hu J S, Wan L J, Tang Q X and Hu W P 2008 J. Mater. Chem. 18 328
[10] Shin H S, Yoon S M, Tang Q, Chon B, Joo T and Choi H G 2008 Angew. Chem. 120 705
[11] Miyazawa K and Hamamoto K 2002 J. Mater. Res. 17 2205
[12] Xu M, Pathak Y, Fujita D, Ringor C and Miyazawa K 2008 Nanotechnology 19 075712
[13] Park C, Song H J and Choi H C 2009 Chem. Commun. 4803
[14] Sathish M and Miyazawa K 2007 J. Am. Chem. Soc. 129 13816
[15] Park C, Yoon E, Kawano M, Joo T and Choi H C 2010 Angew. Chem., Int. Ed. 49 9670
[16] Yao M G, Fan X H, Liu D D, Liu B B and Wagberg T 2012 Carbon 50 209
[17] Ji H X, Hu J S, Tang Q X, Song W G, Wang C R, Hu W P, Wan L J and Lee S T 2007 J. Phys. Chem. C 111 10498
[18] Kim J, Park C and Choi H C 2015 Chem. Mater. 27 2408
[19] Geng J, Zhou W, Skelton P, Yue W, Kinloch I A, Windle A H and Johnson B F G 2008 J. Am. Chem. Soc. 130 2527
[20] Alargova R G, Deguchi S and Tsujii K 2001 J. Am. Chem. Soc. 123 10460
[21] Sun Y P and Bunker C E 1993 Nature 365 398
[22] Bokare A D and Patnaik A 2005 J. Phys. Chem. B 109 87
[23] Ruoff R S, Tse D S, Malhotra R and Lorents D C 1993 J. Phys. Chem. 97 3379
[24] Ouyang J, Pei J, Kuang Q, Xie Z and Zheng L 2014 ACS Appl. Mater. Interfaces 6 12505
[25] Nichols P L, Sun M and Ning C 2011 ACS Nano 5 8730
[26] Zhang X J, Zhao C P, Lv J Y, Dong C, Ou X M, Zhang X H and Lee S T 2011 Cryst. Growth Des. 11 3677
[27] Jeong J, Kim W S, Park S I, Yoon T S and Chung B H 2010 J. Phys. Chem. C 114 12976
[28] Talyzin A and Jansson U 2000 J. Phys. Chem. B 104 5064
[29] Li Y J, Lin Y, Wang N, Li Y L, Liu H B, Lu F S, Zhuang J P and Zhu D B 2005 Carbon 43 1968
[30] Xiao J C, Liu Y, Li Y J, Ye J P, Li Y L, Xu X H, Li X F, Liu H B, Huang C S, Cui S and Zhu D B 2006 Carbon 44 2785
[31] Liu D D, Yao M G, Li Q J, Cui W, Wang L, Li Z P, Liu B, Lv H, Zou B, Cui T, Liu B B and Sundqvist B 2012 J. Raman Spectrosc. 43 737
[32] Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W and Silva S R 2006 J. Mater. Chem. 16 3715
[33] Wu J H, Zhu X J, Guan Y, Wang Y J, Jin F, Guan R N, Liu F P, Chen M Q, Tian Y C and Yang S F 2019 Angew. Chem. Int. Ed. 58 11350
[34] Cha S I, Miyazawa K, Kim Y K, Lee D Y and Kim J D 2011 J. Nanosci. Nanotechnol. 11 3374
[35] Zhang X J, Zhang X H, Zou K, Lee C S and Lee S T 2007 J. Am. Chem. Soc. 129 3527
[36] Shrestha L K, Hill J P, Tsuruoka T, Miyazawa K and Ariga K 2013 Langmuir 29 7195
[37] Meletov K P, Dolganov V K, Zharikov O V, Kremenskaya I N and Ossipyan Y A 1992 J. Phys. I 2 2097
[1] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[2] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[3] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[4] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[5] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[6] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[7] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[8] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[9] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[10] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[11] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[12] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[13] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[14] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[1] PAN ZHONG, WU RONG-HAN, WANG QI-MING. EFFECTIVE CAVITY LENGTH IN VERTICAL CAVITY SURFACE EMITTING LASER[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(11): 810 -815 .
[2] Fang Jian-Hui, Zhao Song-Qing. Noether's theorem of a rotational relativistic variable mass system[J]. Chin. Phys., 2002, 11(5): 445 -449 .
[3] Chen Chao, Wang Zhi-Wen. Inequalities of the electron density at the nucleus and radial expectation values of the ground state for the lithium isoelectronic sequence[J]. Chin. Phys., 2003, 12(6): 604 -609 .
[4] Wang Peng-Ye, Xie Ping, Yin Hua-Wei. Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations[J]. Chin. Phys., 2003, 12(6): 674 -679 .
[5] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Wang Peng, Xu De-Gang, Zhang Fan, Zhang Hao, Yu Guo-Jun. Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3[J]. Chin. Phys., 2004, 13(3): 364 -368 .
[6] Luo Shao-Kai, Cai Jian-Le, Jia Li-Qun. A new non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations[J]. Chin. Phys., 2005, 14(4): 656 -659 .
[7] Cheng Qing-Hua, Cao Li, Xu Da-Hai, Wu Da-Jin. Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts[J]. Chin. Phys., 2005, 14(6): 1159 -1167 .
[8] Zhao Song-Qing, Zhou Yue-Liang, Zhao Kun, Wang Shu-Fang, Chen Zheng-Hao, Lü Hui-Bin, Jin Kui-Juan, Cheng Bo-Lin, Yang Guo-Zhen. Ultraviolet photovoltaic characteristic of MgB2 thin film[J]. Chin. Phys., 2006, 15(4): 839 -841 .
[9] Song Li-Jun, Li Lu, Zhou Guo-Sheng. Interactions of adjacent pulsating, erupting and creeping solitons[J]. Chin. Phys., 2007, 16(1): 148 -153 .
[10] Ding Bo-Jiang, Sakamoto Yoshiteru, Miura Yukitoshi. Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak[J]. Chin. Phys., 2007, 16(11): 3434 -3442 .