Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087306    DOI: 10.1088/1674-1056/abff32
RAPID COMMUNICATION Prev   Next  

Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity

Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉)
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education&Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Interlayer coupling in layered semiconductors can significantly affect their optoelectronic properties. However, understanding the mechanisms behind the interlayer coupling at the atomic level is not straightforward. Here, we study modulations of the electronic structure induced by the interlayer coupling in the γ-phase of indium selenide (γ-InSe) using scanning probe techniques. We observe a strong dependence of the energy gap on the sample thickness and a small effective mass along the stacking direction, which are attributed to strong interlayer coupling. In addition, the moiré patterns observed in γ-InSe display a small band-gap variation and nearly constant local differential conductivity along the patterns. This suggests that modulation of the electronic structure induced by the moiré potential is smeared out, indicating the presence of a significant interlayer coupling. Our theoretical calculations confirm that the interlayer coupling in γ-InSe is not only of the van der Waals origin, but also exhibits some degree of hybridization between the layers. Strong interlayer coupling might play an important role in the performance of γ-InSe-based devices.
Keywords:  indium selenide (InSe)      interlayer coupling      scanning tunneling microscopy/spectroscopy (STM/STS)      density functional theory  
Received:  21 April 2021      Revised:  28 April 2021      Accepted manuscript online:  08 May 2021
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11804089, 11574350, 11904094, and 51972106), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2018JJ3025, 2019JJ50034, and 2019JJ50073), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Li Zhang, Zhihui Qin     E-mail:  li_zhang@hnu.edu.cn;zhqin@hnu.edu.cn

Cite this article: 

Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉) Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity 2021 Chin. Phys. B 30 087306

[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[2] Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302
[3] Meng X Q, Chen S L, Fang Y Z and Kou J L 2019 Chin. Phys. B 28 078101
[4] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604
[5] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardiére G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[6] Qin Z H 2017 Acta Phys. Sin. 21 216802 (in Chinese)
[7] Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39
[8] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese)
[9] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223
[10] Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, B K M, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800
[11] Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patané A 2017 Phys. Rev. Lett. 119 157701
[12] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102
[13] Liu L, Wu L, Wang A, Liu H, Ma R, Wu K, Chen J, Zhou Z, Tian Y, Yang H, Shen C, Bao L, Qin Z, Pantelides S T and Gao H J 2020 Nano Lett. 20 6666
[14] Lugovskoi A V, Katsnelson M I and Rudenko A N 2019 Phys. Rev. Lett. 123 176401
[15] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett. 111 092107
[16] Mudd G W, Patané A, Kudrynskyi Z R, Fay M W, Makarovsky O, Eaves L, Kovalyuk Z D, Zólyomi V and Falko V 2014 Appl. Phys. Lett. 105 221909
[17] Kibirev I A, Matetskiy A V, Zotov A V and Saranin A A 2018 Appl. Phys. Lett. 112 191602
[18] Sun Y, Luo S, Zhao X G, Biswas K, Li S L and Zhang L 2018 Nanoscale 10 7991
[19] Song C, Fan F, Xuan N, Huang S, Zhang G, Wang C, Sun Z, Wu H and Yan H 2018 ACS Appl. Mater. Interfaces 10 3994
[20] Li W, Poncé S and Giustino F 2019 Nano Lett. 19 1774
[21] Mudd G W, Svatek S A, Ren T, Patané A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714
[22] Mudd G W, Molas M R, Chen X, Zólyomi V, Nogajewski K, Kudrynskyi Z R, Kovalyuk Z D, Yusa G, Makarovsky O, Eaves L, Potemski M, Fal'ko V I and Patané A 2016 Sci. Rep. 6 39619
[23] Zhang Z, Chen Z, Bouaziz M, Giorgetti C, Yi H, Avila J, Tian B, Shukla A, Perfetti L, Fan D, Li Y and Bendounan A 2019 ACS Nano 13 13486
[24] Chen Z, Giorgetti C, Sjakste J, Cabouat R, Véniard V, Zhang Z, Taleb-Ibrahimi A, Papalazarou E, Marsi M, Shukla A, Peretti J and Perfetti L 2018 Phys. Rev. B 97 241201
[25] Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J, Bertran F, Le Févre P, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E and Ouerghi A 2019 Phys. Rev. Mater. 3 034004
[26] Li S, Zhong C, Henning A, Sangwan V K, Zhou Q, Liu X, Rahn M S, Wells S A, Park H Y, Luxa J, Sofer Z, Facchetti A, Darancet P, Marks T J, Lauhon L J, Weiss E A and Hersam M C 2020 ACS Nano 14 3509
[27] Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W and Wu S 2017 Phys. Rev. Lett. 119 046101
[28] Yin L J, Yang L Z, Zhang L, Wu Q, Fu X, Tong L H, Yang G, Tian Y, Zhang L and Qin Z 2020 Phys. Rev. B 102 241403
[29] Huang Y, Pan Y H, Yang R, et al. 2020 Nat. Commun. 11 2453
[30] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Wijk M M v, Schuring A, Katsnelson M I and Fasolino A 2015 2D Mater. 2 034010
[35] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[36] Dai M, Chen H, Wang F, Hu Y, Wei S, Zhang J, Wang Z, Zhai T and Hu P 2019 ACS Nano 13 7291
[37] Errandonea D, Segura A, Manjón F J, Chevy A, Machado E, Tobias G, Ordejón P and Canadell E 2005 Phys. Rev. B 71 125206
[38] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C, Zhang L, Yan S, Su G, Wang Z, Watanabe K, Taniguchi T, Singh D J, Zhang L and Miao F 2018 Nano Lett. 18 7538
[39] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[40] Shubina T V, Desrat W, Moret M, Tiberj A, Briot O, Davydov V Y, Platonov A V, Semina M A and Gil B 2019 Nat. Commun. 10 3479
[41] Magorrian S J, Zólyomi V and Fal'ko V I 2016 Phys. Rev. B 94 245431
[42] Weiser G 1992 Phys. Rev. B 45 14076
[43] Li W and Giustino F 2020 Phys. Rev. B 101 035201
[44] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2010 Phys. Rev. B 81 125427
[45] Hamer M J, Zultak J, Tyurnina A V, Zolyomi V, Terry D, Barinov A, Garner A, Donoghue J, Rooney A P, Kandyba V, Giampietri A, Graham A, Teutsch N, Xia X, Koperski M, Haigh S J, Fal'ko V I, Gorbachev R V and Wilson N R 2019 ACS Nano 13 2136
[46] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
[47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[48] Grüneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T and Rubio A 2008 Phys. Rev. B 78 205425
[49] Rudenko A N, Yuan S and Katsnelson M I 2015 Phys. Rev. B 92 085419
[1] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[2] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[3] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[4] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[5] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[6] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[7] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[8] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[9] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[10] Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure
Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃). Chin. Phys. B, 2022, 31(1): 017901.
[11] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[12] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[13] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[14] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[15] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[1] TANG ZHENG-YUAN, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, YANG HONG-QIONG, MA CHI. NEUTRON TIME OF FLIGHT ENERGY SPECTROMETER FOR ICF ION TEMPERATURE DIAGNOSTIC[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(12): 913 -918 .
[2] Zhang Zhong-can, Hu Chen-guo, Fang Zhen-yun. SCREENING EFFECT OF THE SPIN DISTRIBUTION IN THE ATOMS OF HYDROGEN AND ALKALI METALS UNDER THE DISTURBANCE OF A STRONG PERIODIC MAGNETIC FIELD[J]. Chin. Phys. B, 1999, 8(2): 97 -108 .
[3] Liu Ning, Liu Song-hao, Liao Chang-jun, Guo Qi, Xu Wen-cheng. THE NONLINEAR SCHR?DINGER EQUATION AND THE CROSS-PHASE MODULATION IN ERBIUM-DOPED FIBER AMPLIFIERS[J]. Chin. Phys. B, 2000, 9(10): 753 -756 .
[4] Peng Jie-Hua, Tang Jia-Shi, Yu De-Jie, Hai Wen-Hua, Yan Jia-Ren. Suppressing chaos by parametric perturbation at doubled frequency of periodic perturbation[J]. Chin. Phys. B, 2003, 12(1): 17 -21 .
[5] Zhu Feng, Proch D., Hao Jian-Kui. Multipacting phenomenon at high electric fields of superconducting cavities[J]. Chin. Phys. B, 2005, 14(3): 494 -499 .
[6] Hao Yong-Qin(郝永芹), Zhong Jing-Chang(钟景昌), Ma Jian-Li(马建立), Zhang Yong-Ming(张永明), and Wang Li-Jun(王立军). Characteristics of selective oxidation during the fabrication of vertical cavity surface emitting laser[J]. Chin. Phys., 2006, 15(8): 1806 -1809 .
[7] Li Li-Qin, Liu Peng, Dong Yu-Hui, Chen Xi-Meng, Dong Shu-Qiang. Investigation of the topological shape of bovine serum albumin in solution by small-angle x-ray scattering at Beijing synchrotron radiation facility[J]. Chin. Phys. B, 2008, 17(12): 4574 -4579 .
[8] Luo Zhi-Quan(罗志全) and Liu Men-Quan(刘门全). Re-research on the size of proto-neutron star in core-collapse supernova[J]. Chin. Phys. B, 2008, 17(3): 1147 -1151 .
[9] Huang Wei-Qi(黄伟其), Xu Li(许丽), Wang Hai-Xu(王海旭), Jin Feng(金峰), Wu Ke-Yue(吴克跃), Liu Shi-Rong(刘世荣), Qin Cao-Jian(秦朝建), and Qin Shui-Jie(秦水介) . Stimulated photoluminescence emission and trap states in Si/SiO2 interface formed by irradiation of laser[J]. Chin. Phys. B, 2008, 17(5): 1817 -1820 .
[10] Xu Hong-Yan(徐宏妍), Jian Ao-Qun(菅傲群), Xue Chen-Yang(薛晨阳),Chen Yang(陈阳), Zhang Bin-Zhen(张斌珍), Zhang Wen-Dong(张文栋), Zhang Zhi-Guo(张志国), and Feng Zhen(冯震) . Temperature dependence of biaxial strain and its influence on phonon and band gap of GaN thin film[J]. Chin. Phys. B, 2008, 17(6): 2245 -2250 .