Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087306    DOI: 10.1088/1674-1056/abff32
RAPID COMMUNICATION Prev   Next  

Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity

Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉)
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education&Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Interlayer coupling in layered semiconductors can significantly affect their optoelectronic properties. However, understanding the mechanisms behind the interlayer coupling at the atomic level is not straightforward. Here, we study modulations of the electronic structure induced by the interlayer coupling in the γ-phase of indium selenide (γ-InSe) using scanning probe techniques. We observe a strong dependence of the energy gap on the sample thickness and a small effective mass along the stacking direction, which are attributed to strong interlayer coupling. In addition, the moiré patterns observed in γ-InSe display a small band-gap variation and nearly constant local differential conductivity along the patterns. This suggests that modulation of the electronic structure induced by the moiré potential is smeared out, indicating the presence of a significant interlayer coupling. Our theoretical calculations confirm that the interlayer coupling in γ-InSe is not only of the van der Waals origin, but also exhibits some degree of hybridization between the layers. Strong interlayer coupling might play an important role in the performance of γ-InSe-based devices.
Keywords:  indium selenide (InSe)      interlayer coupling      scanning tunneling microscopy/spectroscopy (STM/STS)      density functional theory  
Received:  21 April 2021      Revised:  28 April 2021      Accepted manuscript online:  08 May 2021
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11804089, 11574350, 11904094, and 51972106), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2018JJ3025, 2019JJ50034, and 2019JJ50073), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Li Zhang, Zhihui Qin     E-mail:  li_zhang@hnu.edu.cn;zhqin@hnu.edu.cn

Cite this article: 

Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉) Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity 2021 Chin. Phys. B 30 087306

[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[2] Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302
[3] Meng X Q, Chen S L, Fang Y Z and Kou J L 2019 Chin. Phys. B 28 078101
[4] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604
[5] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardiére G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[6] Qin Z H 2017 Acta Phys. Sin. 21 216802 (in Chinese)
[7] Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39
[8] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese)
[9] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223
[10] Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, B K M, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800
[11] Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patané A 2017 Phys. Rev. Lett. 119 157701
[12] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102
[13] Liu L, Wu L, Wang A, Liu H, Ma R, Wu K, Chen J, Zhou Z, Tian Y, Yang H, Shen C, Bao L, Qin Z, Pantelides S T and Gao H J 2020 Nano Lett. 20 6666
[14] Lugovskoi A V, Katsnelson M I and Rudenko A N 2019 Phys. Rev. Lett. 123 176401
[15] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett. 111 092107
[16] Mudd G W, Patané A, Kudrynskyi Z R, Fay M W, Makarovsky O, Eaves L, Kovalyuk Z D, Zólyomi V and Falko V 2014 Appl. Phys. Lett. 105 221909
[17] Kibirev I A, Matetskiy A V, Zotov A V and Saranin A A 2018 Appl. Phys. Lett. 112 191602
[18] Sun Y, Luo S, Zhao X G, Biswas K, Li S L and Zhang L 2018 Nanoscale 10 7991
[19] Song C, Fan F, Xuan N, Huang S, Zhang G, Wang C, Sun Z, Wu H and Yan H 2018 ACS Appl. Mater. Interfaces 10 3994
[20] Li W, Poncé S and Giustino F 2019 Nano Lett. 19 1774
[21] Mudd G W, Svatek S A, Ren T, Patané A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714
[22] Mudd G W, Molas M R, Chen X, Zólyomi V, Nogajewski K, Kudrynskyi Z R, Kovalyuk Z D, Yusa G, Makarovsky O, Eaves L, Potemski M, Fal'ko V I and Patané A 2016 Sci. Rep. 6 39619
[23] Zhang Z, Chen Z, Bouaziz M, Giorgetti C, Yi H, Avila J, Tian B, Shukla A, Perfetti L, Fan D, Li Y and Bendounan A 2019 ACS Nano 13 13486
[24] Chen Z, Giorgetti C, Sjakste J, Cabouat R, Véniard V, Zhang Z, Taleb-Ibrahimi A, Papalazarou E, Marsi M, Shukla A, Peretti J and Perfetti L 2018 Phys. Rev. B 97 241201
[25] Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J, Bertran F, Le Févre P, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E and Ouerghi A 2019 Phys. Rev. Mater. 3 034004
[26] Li S, Zhong C, Henning A, Sangwan V K, Zhou Q, Liu X, Rahn M S, Wells S A, Park H Y, Luxa J, Sofer Z, Facchetti A, Darancet P, Marks T J, Lauhon L J, Weiss E A and Hersam M C 2020 ACS Nano 14 3509
[27] Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W and Wu S 2017 Phys. Rev. Lett. 119 046101
[28] Yin L J, Yang L Z, Zhang L, Wu Q, Fu X, Tong L H, Yang G, Tian Y, Zhang L and Qin Z 2020 Phys. Rev. B 102 241403
[29] Huang Y, Pan Y H, Yang R, et al. 2020 Nat. Commun. 11 2453
[30] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Wijk M M v, Schuring A, Katsnelson M I and Fasolino A 2015 2D Mater. 2 034010
[35] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[36] Dai M, Chen H, Wang F, Hu Y, Wei S, Zhang J, Wang Z, Zhai T and Hu P 2019 ACS Nano 13 7291
[37] Errandonea D, Segura A, Manjón F J, Chevy A, Machado E, Tobias G, Ordejón P and Canadell E 2005 Phys. Rev. B 71 125206
[38] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C, Zhang L, Yan S, Su G, Wang Z, Watanabe K, Taniguchi T, Singh D J, Zhang L and Miao F 2018 Nano Lett. 18 7538
[39] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[40] Shubina T V, Desrat W, Moret M, Tiberj A, Briot O, Davydov V Y, Platonov A V, Semina M A and Gil B 2019 Nat. Commun. 10 3479
[41] Magorrian S J, Zólyomi V and Fal'ko V I 2016 Phys. Rev. B 94 245431
[42] Weiser G 1992 Phys. Rev. B 45 14076
[43] Li W and Giustino F 2020 Phys. Rev. B 101 035201
[44] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2010 Phys. Rev. B 81 125427
[45] Hamer M J, Zultak J, Tyurnina A V, Zolyomi V, Terry D, Barinov A, Garner A, Donoghue J, Rooney A P, Kandyba V, Giampietri A, Graham A, Teutsch N, Xia X, Koperski M, Haigh S J, Fal'ko V I, Gorbachev R V and Wilson N R 2019 ACS Nano 13 2136
[46] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
[47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[48] Grüneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T and Rubio A 2008 Phys. Rev. B 78 205425
[49] Rudenko A N, Yuan S and Katsnelson M I 2015 Phys. Rev. B 92 085419
[1] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[2] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[3] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[4] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[5] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[6] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[7] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[8] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[9] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[10] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[11] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[12] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[13] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[14] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[15] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[1] Li Shao-Hui, Li Ru-Xin, Ni Guo-Quan, Xu Zhi-Zhan. Electron impact ionization of large krypton clusters[J]. Chin. Phys., 2004, 13(10): 1684 -1688 .
[2] Rong Chuan-Bing, Zhang Jian, Du Xiao-Bo, Zhang Hong-Wei, Zhang Shao-Ying, Shen Bao-Gen. Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons[J]. Chin. Phys., 2004, 13(7): 1144 -1148 .
[3] Ning Xin-Bao, Wu Wei, Ma Xiao-Fei, Li Jin. Detecting dynamical complexity changes in time series using the base-scale entropy[J]. Chin. Phys., 2005, 14(12): 2428 -2432 .
[4] Wang Zhu-Yuan, Cui Yi-Ping. Behaviour of a wideband double-pass discrete Raman amplifier with simultaneous reflection of signals and multi-pump[J]. Chin. Phys., 2005, 14(2): 372 -377 .
[5] Ke Jian-Hong, Zhuang You-Yi, Lin Zhen-Quan. Aggregate growth driven by monomer transfer[J]. Chin. Phys., 2005, 14(8): 1676 -1682 .
[6] Cai Xin-Hua, Guo Jie-Rong, Nie Jian-Jun, Jia Jin-Ping. Entanglement diversion and quantum teleportation of entangled coherent states[J]. Chin. Phys., 2006, 15(3): 488 -491 .
[7] Li Mi-Shan, Tian Qiang. Discrete gap breathers in a diatomic K2--K3--K4 chain with cubic nonlinearity[J]. Chin. Phys., 2007, 16(1): 228 -235 .
[8] Wang Xiang-Hui, Lin Lie, Zhang Yang. Analysis of second-harmonic generation microscopy under refractive index mismatch[J]. Chin. Phys., 2007, 16(11): 3285 -3289 .
[9] Chen Jia, Li Sheng, Ma Hong-Ru. Quasispecies distribution of Eigen model[J]. Chin. Phys., 2007, 16(9): 2600 -2607 .
[10] Xu Guang-Yuan, Yan Li, Wang Yong-Jun, Liu Xian-Feng, Han Jiu-Rong, Wang Yu-Zhu. Study of dynamical behaviour and fermionization of a bosonic gas in funnel potential[J]. Chin. Phys. B, 2008, 17(11): 4158 -4162 .