Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087305    DOI: 10.1088/1674-1056/ac0793
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure

Ruo-Han Li(李若晗)1, Wu-Xiong Fei(费武雄)2, Rui Tang(唐锐)2, Zhao-Xi Wu(吴照玺)3, Chao Duan(段超)3, Tao Zhang(张涛)1, Dan Zhu(朱丹)1, Wei-Hang Zhang(张苇杭)1, Sheng-Lei Zhao(赵胜雷)1,†, Jin-Cheng Zhang(张进成)1,‡, and Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductors and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3 China Aerospace Components Engineering Center, Beijing 100094, China
Abstract  The threshold voltage (Vth) of the p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) is investigated via Silvaco-Atlas simulations. The main factors which influence the threshold voltage of p-channel GaN MOSFETs are barrier height Φ1,p, polarization charge density σb, and equivalent unite capacitance Coc. It is found that the thinner thickness of p-GaN layer and oxide layer will acquire the more negative threshold voltage Vth, and threshold voltage |Vth| increases with the reduction in p-GaN doping concentration and the work-function of gate metal. Meanwhile, the increase in gate dielectric relative permittivity may cause the increase in threshold voltage |Vth|. Additionally, the parameter influencing output current most is the p-GaN doping concentration, and the maximum current density is 9.5 mA/mm with p-type doping concentration of 9.5×1016 cm-3 at VGS = -12 V and VDS = -10 V.
Keywords:  p-channel GaN MOSFETs      enhancement mode (E-mode)      threshold voltage  
Received:  02 March 2021      Revised:  13 May 2021      Accepted manuscript online:  03 June 2021
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2020B010174001 and 2020B010171002), the Ningbo Science and Technology Innovation Program 2025 (Grant No. 2019B10123), and the National Natural Science Foundation of China (Grant No. 62074122).
Corresponding Authors:  Sheng-Lei Zhao, Jin-Cheng Zhang     E-mail:  slzhao@xidian.edu.cn;jchzhang@xidian.edu.cn

Cite this article: 

Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃) Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure 2021 Chin. Phys. B 30 087305

[1] Wu Y F, Gritters J, Shen L, Smith R P and Swenson B 2014 IEEE Trans. Power Electron. 29 2634
[2] Smorchkova I P, Haus E, Heying B, Kozodoy P, Fini P, Ibbetson J P, Keller S, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 76 718
[3] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M 2011 IEEE Electron Dev. Lett. 32 542
[4] Li G W, Wang R H, Song B, Verma J, Cao Y, Ganguly S, Verma A, Guo J, Xing H G and Jena D 2013 IEEE Electron Dev. Lett. 34 852
[5] Chu R M, Cao Y, Chen M, Li R and Zehnder D 2016 IEEE Electron Dev. Lett. 37 269
[6] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M S 2010 Appl. Phys. Express 3 121004
[7] Nakajima A, Kubota S, Tsutsui K, Kakushima K, Wakabayashi H, Iwai H, Nishizawa S and Ohashi H 2017 IET Power Electron 11 689
[8] Chowdhury N, Lemettinen J, Xie Q Y, Zhang Y H, Rajput N S, Xiang P, Cheng K, Suihkonen S, Then H W and Palacios T 2019 IEEE Electron Dev. Lett. 40 103
[9] Zheng Z Y, Song W J, Zhang L, Yang S, Wei J and Chen K J 2020 IEEE Electron Dev. Lett. 41 26
[10] Hackenbuchner S, Majewski J A, Zandler G and Vogl P 2001 J. Cryst. Growth 230 607
[11] Motorola. (U.S. Patent) 3683 202 [1972-08-08]
[12] Binari S C, Klein P B and Kazior T E. 2002 Proc. IEEE 90 1048
[13] Kumar A and Souza M M D 2018 IET Power Electron 11 675
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[3] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[4] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[5] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[6] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[7] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[8] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[9] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[10] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[11] Characteristics and threshold voltage model of GaN-based FinFET with recessed gate
Chong Wang(王冲), Xin Wang(王鑫), Xue-Feng Zheng(郑雪峰), Yun Wang(王允), Yun-Long He(何云龙), Ye Tian(田野), Qing He(何晴), Ji Wu(吴忌), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(9): 097308.
[12] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[13] Two-dimensional models of threshold voltage andsubthreshold current for symmetrical double-material double-gate strained Si MOSFETs
Yan-hui Xin(辛艳辉), Sheng Yuan(袁胜), Ming-tang Liu(刘明堂),Hong-xia Liu(刘红侠), He-cai Yuan(袁合才). Chin. Phys. B, 2016, 25(3): 038502.
[14] Analytical threshold voltage model for strained silicon GAA-TFET
Hai-Yan Kang(康海燕), Hui-Yong Hu(胡辉勇), Bin Wang(王斌). Chin. Phys. B, 2016, 25(11): 118501.
[15] A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET
Shweta Tripathi. Chin. Phys. B, 2016, 25(10): 108503.
No Suggested Reading articles found!