Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086108    DOI: 10.1088/1674-1056/abf7ac
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation

Peng-Wei Hou(侯鹏伟)1,2, Yu-Hao Li(李宇浩)1,2,†, Zhong-Zhu Li(李中柱)1,2, Li-Fang Wang(王丽芳)3, Xingyu Gao(高兴誉)3, Hong-Bo Zhou(周洪波)1,2,‡, Haifeng Song(宋海峰)3, and Guang-Hong Lu(吕广宏)1,2
1 Department of Physics, Beihang University, Beijing 100191, China;
2 Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China;
3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Understanding the evolution of irradiation-induced defects is of critical importance for the performance estimation of nuclear materials under irradiation. Hereby, we systematically investigate the influence of He on the evolution of Frenkel pairs and collision cascades in tungsten (W) via using the object kinetic Monte Carlo (OKMC) method. Our findings suggest that the presence of He has significant effect on the evolution of irradiation-induced defects. On the one hand, the presence of He can facilitate the recombination of vacancies and self-interstitial atoms (SIAs) in W. This can be attributed to the formation of immobile He-SIA complexes, which increases the annihilation probability of vacancies and SIAs. On the other hand, due to the high stability and low mobility of He-vacancy complexes, the growth of large vacancy clusters in W is kinetically suppressed by He addition. Specially, in comparison with the injection of collision cascades and He in sequential way at 1223 K, the average sizes of surviving vacancy clusters in W via simultaneous way are smaller, which is in good agreement with previous experimental observations. These results advocate that the impurity with low concentration has significant effect on the evolution of irradiation-induced defects in materials, and contributes to our understanding of W performance under irradiation.
Keywords:  tungsten      helium      irradiation-induced defects      object kinetic Monte Carlo  
Received:  05 March 2021      Revised:  12 April 2021      Accepted manuscript online:  14 April 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018002), the National Natural Science Foundation of China (Grant No. 11905135), and the National MCF Energy R&D Program of China (Grant No. 2018YFE0308103).
Corresponding Authors:  Yu-Hao Li, Hong-Bo Zhou     E-mail:;

Cite this article: 

Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏) Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation 2021 Chin. Phys. B 30 086108

[1] Bloom E E, Zinkle S J and Wiffen F W 2004 J. Nucl. Mater. 329 12
[2] Zinkle S J 2005 Phys. Plasmas 12 058101
[3] Yin H, Wang J, Guo W G, Cheng L and Lu G H 2019 Tungsten 1 132
[4] Hu X X, Koyanagi T, Fukuda M, Kumar N A P K, Snead L L, Wirth B D and Katoh Y 2016 J. Nucl. Mater. 480 235
[5] Li Y G, Zheng Q R, Wei L M, Zhang C G and Zeng Z 2020 Tungsten 2 34
[6] Hu X X, Koyanagi T, Fukuda M, Katoh Y, Snead L L and Wirth B D 2016 J. Nucl. Mater. 470 278
[7] Song Y Y P, Qiu W B, Chen L Q, Yang X L, Deng H, Liu C S, Zhang K and Tang J 2020 Chin. Phys. B 29 105202
[8] Hu L, Wirth B D and Maroudas D 2017 Appl. Phys. Lett. 111 081902
[9] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016
[10] El-Atwani O, Aydogan E, Esquivel E, Efe M, Wang Y Q and Maloy S A 2018 Acta Mater. 147 277
[11] Bonny G, Castin N, Bakaev A, Sand A E and Terentyev D 2020 Comp. Mater. Sci. 181 109727
[12] Sand A E, Nordlund K and Dudarev S L 2014 J. Nucl. Mater. 455 207
[13] Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X and Chen J M 2016 Chin. Phys. B 25 056102
[14] Katoh Y, Snead L L, Garrison L M, Hu X, Koyanagi T, Parish C M, Edmondson P D, Fukuda M, Hwang T, Tanaka T and Hasegawa A 2019 J. Nucl. Mater. 520 193
[15] Abernethy R G 2017 Mater. Sci. Tech. 33 388
[16] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[17] Zinkle S J and Was G S 2013 Acta Mater. 61 735
[18] Gilbert M R, Dudarev S L, Zheng S, Packer L W and Sublet J C 2012 Nucl. Fusion 52 083019
[19] Thompson M, Drummond D, Sullivan J, Elliman R, Kluth P, Kirby N, Riley D and Corr C S 2018 Nucl. Fusion 58 066010
[20] Getto E, Jiao Z, Monterrosa A M, Sun K and Was G S 2015 J. Nucl. Mater. 462 458
[21] Ayanoglu M and Motta A T 2018 J. Nucl. Mater. 510 297
[22] Sun F, Nakata M, Lee S E, Zhao M, Wada T, Yamazaki S, Koike A, Kondo S, Hinoki T, Hara M and Oya Y 2020 J. Nucl. Mater. 533 152122
[23] El-Atwani O, Cunningham W S, Trelewicz J R, Li M, Wirth B D and Maloy S A 2020 J. Nucl. Mater. 538 152150
[24] Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A E 2014 J. Phys. D-Appl. Phys. 47 224018
[25] Valles G, Cazalilla A L, Gonzalez C, Martin-Bragado I, Prada A, Iglesias R, Perlado J M and Rivera A 2015 Nucl. Instrum. Meth. B 352 100
[26] Derlet P M, Nguyen-Manh D and Dudarev S L 2007 Phys. Rev. B 76 054107
[27] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 115010
[28] You Y W, Li D D, Kong X S, Wu X B, Liu C S, Fang Q F, Pan B C, Chen J L and Luo G N 2014 Nucl. Fusion 54 103007
[29] Boisse J, Domain C and Becquart C S 2014 J. Nucl. Mater. 455 10
[30] Zhou H B, Wang J L, Jiang W, Lu G H, Aguiar J A and Liu F 2016 Acta Mater. 119 1
[31] Bakaev A, Grigorev P, Terentyev D, Bakaeva A, Zhurkin E E and Mastrikov Y A 2017 Nucl. Fusion 57 126040
[32] You Y W, Sun J J, Wu X B, Xu Y C, Zhang T, Hao T, Fang Q F and Liu C S 2019 Nucl. Fusion 59 026002
[33] You Y W, Sun J J, Kong X S, Wu X B, Xu Y C, Wang X P, Fang Q F and Liu C S 2020 Phys. Scripta 95 075708
[34] Ma F F, Hou P W, Li Z Z, Li Y H, Niu Y Z, Ma H Z, Ren Q Y, Gao F, Lu G H and Zhou H B, to be published
[35] Sandoval L, Perez D, Uberuaga B P and Voter A F 2015 Phys. Rev. Lett. 114 105502
[36] Gao E and Ghoniem N M 2018 J. Nucl. Mater. 509 577
[37] Valles G, Gonzalez C, Martin-Bragado I, Iglesias R, Perlado J M and Rivera A 2015 J. Nucl. Mater. 457 80
[38] Wang J, Dang W, Liu D and Guo Z 2020 Chin. Phys. B 29 093101
[39] Li F B, Ran G, Gao N, Zhao S Q and Li N 2019 Chin. Phys. B 28 085203
[40] Li Z Z, Li Y H, Ren Q Y, Ma F F, Yue F Y, Zhou H B and Lu G H 2020 Materials 13 3375
[41] Li Z Z, Li Y H, Terentyev D, Castin N, Bakaev A, Bonny G, Yang Z C, Gao F, Lu G H and Zhou H B, to be published
[42] Huang G Y, Juslin N and Wirth B D 2016 Comp. Mater. Sci. 123 121
[43] Becquart C S, Domain C, Sarkar U, DeBacker A and Hou M 2010 J. Nucl. Mater. 403 75
[44] Li X C, Liu Y N, Yu Y, Luo G N, Shu X L and Lu G H 2014 J. Nucl. Mater. 451 356
[45] Christiaen B, Domain C, Thuinet L, Ambard A and Legris A 2020 Acta Mater. 195 631
[46] Panizo-Laiz M, Diaz-Rodriguez P, Rivera A, Valles G, Martin-Bragado I, Perlado J M, Munnik F and Gonzalez-Arrabal R 2019 Nucl. Fusion 59 086055
[47] Martin-Bragado I, Rivera A, Valles G, Gomez-Selles J L and Caturla M J 2013 Comput. Phys. Commun. 184 2703
[48] Valles G, Panizo-Laiz M, Gonzalez C, Martin-Bragado I, Gonzalez-Arrabal R, Gordillo N, Iglesias R, Guerrero C L, Perlado J M and Rivera A 2017 Acta Mater. 122 277
[49] Becquart C S, Barthe M F and De Backer A 2011 Phys. Scripta T145 014048
[50] Malerba L, Becquart C S and Domain C 2007 J. Nucl. Mater. 360 159
[51] Castin N, Bakaev A, Bonny G, Sand A E, Malerba L and Terentyev D 2017 J. Nucl. Mater. 493 280
[52] Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia C, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A, Force E P T, Team I P, Energy F and DIV I S 2009 J. Nucl. Mater. 390-391 1
[53] Alimov V K, Tyburska-Püschel B, Lindig S, Hatano Y, Balden M, Roth J, Isobe K, Matsuyama M and Yamanishi T 2012 J. Nucl. Mater. 420 519
[54] Gilbert M R and Sublet J C 2011 Nucl. Fusion. 51 043005
[55] Matolich J, Nahm H and Moteff J 1974 Scripta Metallurgica 8 837
[56] Zhang X X, Yan Q Z, Yang C T, Wang T N, Xia M and Ge C C 2016 Rare Metals 35 566
[57] Fikar J and Schaeublin R 2007 Nucl. Instrum. Meth. B. 255 27
[58] You Y W, Kong X S, Wu X B, Liu C S, Chen J L and Luo G N 2017 Nucl. Fusion 57 016006
[59] Heinola K, Djurabekova F and Ahlgren T 2018 Nucl. Fusion 58 026004
[60] Gonzalez C and Iglesias R 2014 J. Mater. Sci. 49 8127
[62] Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Des. 33 50
[1] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[2] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[3] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[4] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[5] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[6] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[9] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[10] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[11] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[12] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[13] Hardening effect of multi-energyW2+-ion irradiation on tungsten–potassium alloy
Yang-Yi-Peng Song(宋阳一鹏), Wen-Bin Qiu(邱文彬), Long-Qing Chen(陈龙庆), Xiao-Liang Yang(杨晓亮), Hao Deng(邓浩), Chang-Song Liu(刘长松), Kun Zhang(张坤)†, and Jun Tang(唐军)‡. Chin. Phys. B, 2020, 29(10): 105202.
[14] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[15] Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic
Hua-Hai Shen(申华海), Xia Xiang(向霞), Hai-Bin Zhang(张海斌), Xiao-Song Zhou(周晓松), Hong-Xiang Deng(邓洪祥), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2019, 28(7): 076104.
[2] Zhang Dong-Hai. Fragmentation of 16O nuclei in nuclear emulsion[J]. Chin. Phys., 2002, 11(12): 1254 -1258 .
[3] Fang Jian-Hui, Zhao Song-Qing. Noether's theorem of a rotational relativistic variable mass system[J]. Chin. Phys., 2002, 11(5): 445 -449 .
[4] Chen Chao, Wang Zhi-Wen. Inequalities of the electron density at the nucleus and radial expectation values of the ground state for the lithium isoelectronic sequence[J]. Chin. Phys., 2003, 12(6): 604 -609 .
[5] Wang Peng-Ye, Xie Ping, Yin Hua-Wei. Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations[J]. Chin. Phys., 2003, 12(6): 674 -679 .
[6] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Wang Peng, Xu De-Gang, Zhang Fan, Zhang Hao, Yu Guo-Jun. Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3[J]. Chin. Phys., 2004, 13(3): 364 -368 .
[7] Luo Shao-Kai, Cai Jian-Le, Jia Li-Qun. A new non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations[J]. Chin. Phys., 2005, 14(4): 656 -659 .
[8] Cheng Qing-Hua, Cao Li, Xu Da-Hai, Wu Da-Jin. Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts[J]. Chin. Phys., 2005, 14(6): 1159 -1167 .
[9] Song Li-Jun, Li Lu, Zhou Guo-Sheng. Interactions of adjacent pulsating, erupting and creeping solitons[J]. Chin. Phys., 2007, 16(1): 148 -153 .
[10] Ding Bo-Jiang, Sakamoto Yoshiteru, Miura Yukitoshi. Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak[J]. Chin. Phys., 2007, 16(11): 3434 -3442 .