Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077503    DOI: 10.1088/1674-1056/abf4bc

Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer

Zi-Bo Zhang(张子博)1 and Yong Hu(胡勇)1,2,†
1 Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China;
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Abstract  A numerical study reports that the zero-field skyrmions in FeGe thin films are stabilized when a FeGe layer is exchange coupled to a single-domain Ni layer, which has been magnetized perpendicularly. Due to the small thickness, an easy-plane anisotropy in the FeGe layer is taken into account, and the skyrmion-crystal state is favored to appear for low anisotropies and intermediate FeGe/Ni interlayer exchange couplings, and finally transformed from a labyrinth-like and into an out-of-plane uniform state for the large couplings or into an in-plane state for the high anisotropies. Furthermore, the maximum skyrmion charge number is bigger for the periodic and fixed boundary conditions with an out-of-plane magnetization; on the contrary, the Bloch-type skyrmions can be frozen and stabilized for the larger couplings on the fixed boundary with an in-plane magnetization, similar to the experimental results of the magnetic-field-induced skyrmions. Finally, the skyrmion charge number and diameter both decrease if the nonmagnetic defects exist, and the skyrmion centers are prone to being captured by defect sites. This work evidences that the ensembles of homochiral skyrmions stabilized in the multilayers fabricated by well-established technologies present a roadmap to design new classes of the materials that can host skyrmions.
Keywords:  FeGe thin film      zero-field skyrmion      interlayer exchange coupling      Monte Carlo simulation  
Received:  27 February 2021      Revised:  23 March 2021      Accepted manuscript online:  05 April 2021
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.10.Hk (Classical spin models)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774045), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant No. 20180510008), and the Fundamental Research Funds for Central Universities, China (Grant No. N182410008-1).
Corresponding Authors:  Yong Hu     E-mail:

Cite this article: 

Zi-Bo Zhang(张子博) and Yong Hu(胡勇) Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer 2021 Chin. Phys. B 30 077503

[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2019 Science 323 915
[2] Zhang X, Zhou Y, Song K M, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G and Woo S 2020 J. Phys.: Condens. Matter 32 143001
[3] Fert A, Reyren N and Cros V 2017 Nature Rev. Matter. 2 17031
[4] Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1
[5] Wiesendanger R 2016 Nature Rev. Mater. 1 16044
[6] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
[7] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899
[8] Zhou Y 2019 Natl. Sci. Rev. 6 210
[9] Wilhelm H, Baenitz M, Schmidt M, Rößler U K, Leonov A A and Bogdanov A N 2011 Phys. Rev. Lett. 107 127203
[10] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
[11] Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S and Tokura Y 2012 Nano Lett. 12 1673
[12] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[13] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[14] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[15] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636
[16] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[17] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[18] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[19] Berruto G, Madan I, Murooka Y, Vanacore G M, Pomarico E, Rajeswari J, Lamb R, Huang P, Kruchkov A J, Togawa Y, LaGrange T, McGrouther D, R?nnow H M and Carbone F 2018 Phys. Rev. Lett. 120 117201
[20] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett. 106 242404
[21] Nandy A K, Kiselev N S and Blügel S 2016 Phys. Rev. Lett. 116 177202
[22] Sui M X, Zhang Z B, Chi X D, Zhang J Y and Hu Y 2021 Front. Phys. 16 23501
[23] Duong N K, Raju M, Petrović A P, Tomasello R, Finocchio G and Panagopoulos C 2019 Appl. Phys. Lett. 114 072401
[24] Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H and Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[25] Cortés-Ortuño D, Romming N, Beg M, von Bergmann K, Kubetzka A, Hovorka O, Fangohr H and Wiesendanger R 2019 Phys. Rev. B 99 214408
[26] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A and Liu K 2015 Nat. Commun. 6 8462
[27] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A and Ding H F 2013 Phys. Rev. Lett. 110 167201
[28] Liu G B, Li D, de Chatel P F, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B 25 067203
[29] Jin C M and Du H F 2015 Chin. Phys. B 24 128501
[30] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503
[31] Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y and Tian M 2015 Nat. Commun. 6 8504
[32] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[33] Fallon K, Hughes S, Zeissler K, Legrand W, Ajejas F, Maccariello D, McFadzean S, Smith W, McGrouther D, Collin S, Reyren N, Cros V, Marrows C H and McVitie S 2020 Small 16 1907450
[34] Ouyang T Y, Shu G J, Hu C D and Chou F C 2014 IEEE Trans. Magn. 50 1500404
[35] Silva R L, Secchin L D, Moura-Melo W A, Pereira A R and Stamps R L 2014 Phys. Rev. B 89 054434
[36] Brown B L, Täuber U C and Pleimling M 2019 Phys. Rev. B 100 024410
[37] Desplat L, Suess D, Kim J V and Stamps R L 2018 Phys. Rev. B 98 134407
[38] Mochizuki M 2017 Appl. Phys. Lett. 111 092403
[39] Hanneken C, Kubetzka A, von Bergmann K and Wiesendanger R 2016 New J. Phys. 18 055009
[40] Müller J and Rosch A 2015 Phys. Rev. B 91 054410
[41] Bian B, Chen G, Zheng Q, Du J, Lu H, Liu J P, Hu Y and Zhang Z 2018 Small 14 1801184
[42] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[43] Vousden M, Albert M, Beg M, Bisotti M A, Carey R, Chernyshenko D, Cortés-Ortuño D, Wang W, Hovorka O, Marrows C H and Fangohr H 2016 Appl. Phys. Lett. 108 132406
[44] Beg M, Carey R, Wang W, Cortés-Ortuño D, Vousden M, Bisotti M A, Albert M, Chernyshenko D, Hovorka O, Stamps R L and Fangohr H 2015 Sci. Rep. 5 17137
[45] Pauling L and Soldate A M 1948 Acta Cryst. 1 212
[46] Richardson M 1967 Acta Chem. Scand. 21 2305
[47] Yamada H, Terao K, Ohta H and Kulatov E 2003 Physica B 329-333 1131
[48] Grigoriev S V, Maleyev S V, Okorokov A I, Chetverikov Y O, Georgii R, Böni P, Lamago D, Eckerlebe H and Pranzas K 2005 Phys. Rev. B 72 134420
[49] Lebech B, Bernhard J and Freltoft T 1989 J. Phys.: Condens. Matter 1 6105
[50] Hamrle J, Gaier O, Min S G, Hillebrands B, Sakuraba Y and Ando Y 2009 J. Phys. D: Appl. Phys. 42 084005
[51] D'Albuquerque e Castro J, Altbir D, Retamal J C and Vargas P 2002 Phys. Rev. Lett. 88 237202
[52] Vargas P, Altbir D and d'Albuquerque e Castro J 2006 Phys. Rev. B 73 092417
[53] Heim B, R?nnow T F, Isakov S V and Troyer M 2015 Science 348 215
[54] Hu Y, Chi X, Li X, Liu Y and Du A 2017 Sci. Rep. 7 16079
[55] Chi X and Hu Y 2018 Acta Phys. Sin. 67 137502 (in Chinese)
[56] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[57] Kovrizhin D L, Douc?ot B and Moessner R 2013 Phys. Rev. Lett. 110 186802
[58] Tanigaki T, Shibata K, Kanazawa N, Yu X, Aizawa S, Onose Y, Park H S, Shindo D and Tokura Y 2015 Nano Lett. 15 5438
[59] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501
[60] Moon K W, Yoon J, Kim C and Hwang C 2017 Phys. Rev. Appl. 12 064054
[61] Kuchkin V M and Kiselev N S 2020 Phys. Rev. B 101 064408
[62] Garanin D A, Chudnovsky E M, Zhang S and Zhang X 2020 J. Magn. Magn. Mater. 493 165724
[63] Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C and Rosch A 2013 Science 340 1076
[64] Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y and Kagawa F 2015 Nat. Phys. 12 62
[1] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[4] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[5] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[6] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[7] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[8] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[9] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[10] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[11] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[12] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[13] Baseline optimization for scalar magnetometer array and its application in magnetic target localization
Li-Ming Fan(樊黎明), Quan Zheng(郑权), Xi-Yuan Kang(康曦元), Xiao-Jun Zhang(张晓峻), Chong Kang(康崇). Chin. Phys. B, 2018, 27(6): 060703.
[14] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[15] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
No Suggested Reading articles found!