Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060315    DOI: 10.1088/1674-1056/abf3b5
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Fine-grained uncertainty relation for open quantum system

Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊)
School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The fine-grained uncertainty relation (FUR) is investigated for accelerating open quantum system, which manifests the celebrated Unruh effect, a crucial piece of the jigsaw for combining relativity and quantum physics. For a single detector, we show that the inevitable Unruh decoherence can induce a smaller FUR uncertainty bound, which indicates an additional measurement uncertainty may exist. For an open system combined with two detectors, via a nonlocal retrieval game, the related FUR uncertainty bound is determined by the non-classical correlation of the system. By estimating the maximal violation of Bell inequality for an accelerating system, we show that the FUR uncertainty bound can be protected from Unruh decoherence, due to quantum correlation generated through Markovian dynamics.
Keywords:  open quantum system      fine-grained uncertainty relation      Unruh effect  
Received:  25 January 2021      Revised:  23 March 2021      Accepted manuscript online:  31 March 2021
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  04.62.+v (Quantum fields in curved spacetime)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075178) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM1049).
Corresponding Authors:  Jun Feng     E-mail:

Cite this article: 

Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊) Fine-grained uncertainty relation for open quantum system 2021 Chin. Phys. B 30 060315

[1] Heisenberg W 1927 Phys. 43 172
[2] Deutsch D 1983 Phys. Rev. Lett. 50 631
[3] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[4] Coles P J, Berta M, Tomamichel M and Wehner S 2017 Rev. Mod. Phys. 89 015002
[5] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[6] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[7] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[8] Ming F, Wang D, Fan X, Shi W, Ye L and Chen J 2020 Phys. Rev. A 102 012206
[9] Wang D, Ming F, Song X, Ye L and Chen J 2020 Eur. Phys. J. C 80 800
[10] Hall M J W and Wiseman H M 2012 New J. Phys. 14 033040
[11] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[12] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133
[13] Wang D, Ming F, Hu M and Ye L 2019 Ann. Phys. 531 1900124
[14] Oppenheim J and Wehner S 2010 Science 330 1072
[15] Lv W M, Zhang C, Hu X M, Huang Y F, Cao H, Wang J, Hou Z B, Liu B H, Li C F and Guo G C 2019 Sci. Rep. 9 8748
[16] Pramanik T and Majumdar A S 2012 Phys. Rev. A 85 024103
[17] Dey A, Pramanik T and Majumdar A S 2013 Phys. Rev. A 87 012120
[18] Pramanik T, Kaplan M and Majumdar A S 2014 Phys. Rev. A 90 050305
[19] Orieux A, Kaplan M, Venuti V, Pramanik T, Zaquine I and Diamanti E 2018 J. Opt. 20 044006
[20] Pramanik T, Chowdhury P and Majumdar A S 2013 Phys. Rev. Lett. 110 020402
[21] Hanggi E and Wehner S 2013 Nat. Commun. 4 1670
[22] Ren L H and Fan H 2014 Phys. Rev. A 90 052110
[23] Benatti F and Floreanini R 2004 Phys. Rev. A 70 012112
[24] Martín-Martínez E, Aasen D and Kempf A 2013 Phys. Rev. Lett. 110 160501
[25] Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1
[26] Unruh W G 1976 Phys. Rev. D 14 870
[27] Crispino L, Higuchi A and Matsas G E A 2008 Rev. Mod. Phys. 80 787
[28] Aspachs M, Adesso G and Fuentes I 2010 Phys. Rev. Lett. 105 151301
[29] Wang J, Tian Z, Jing J and Fan H 2014 Sci. Rep. 4 7195
[30] Martín-Martínez, Fuentes I and Mann R B 2011 Phys. Rev. Lett. 107 131301
[31] Benatti F, Floreanini R and Marzolino U 2010 Phys. Rev. A 81 012105
[32] Pozas-Kerstjens A and Martín-Martínez E 2015 Phys. Rev. D 92 064042
[33] Nesterov A I, Rodríguez Fernández M A, Berman G P and Wang X 2020 Phys. Rev. Research 2 043230
[34] Feng J, Zhang Y Z, Gould M D and Fan H 2013 Phys. Lett. B 726 527
[35] Feng J, Zhang Y Z, Gould M D and Fan H 2018 Europhys. Lett. 122 60001
[36] Hu J, Feng L, Zhang Z and Chin C 2019 Nat. Phys. 15 785
[37] Jin F, Chen H, Rong X, et al. 2016 Sci. China- Phys. Mech. Astron. 59 630302
[38] Friis N, Lee A R, Truong K, Sabín C, Solano E, Johansson G and Fuentes I 2013 Phys. Rev. Lett. 110 113602
[39] Richter B, Ter?as H, Omar Y and de Vega I 2017 Phys. Rev. A 96 053612
[40] Hu J and Yu H 2013 Phys. Rev. D 88 104003
[41] Gorini V, Kossakowski A and Surdarshan E C G 1976 J. Math. Phys. 17 821
[42] Lindblad G 1976 Commun. Math. Phys. 48 119
[43] Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402
[44] Feng J, Zhang Y Z, Gould M D and Fan H 2015 Phys. Lett. B 743 198
[45] Feng J, Huang X, Zhang Y Z and Fan H 2018 Phys. Lett. B 786 403
[46] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[47] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340
[1] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[2] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[3] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[4] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[5] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[6] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[7] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[8] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[9] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua, Xie Qiong-Tao, Xu Jun, Hai Wen-Hua, Li Chao-Hong. Chin. Phys. B, 2014, 23(2): 020314.
[10] Teleportation of three-dimensional single particle state in noninertial frames
Wu Qi-Cheng, Wen Jing-Ji, Ji Xin, Yeon Kyu-Hwang. Chin. Phys. B, 2014, 23(2): 020303.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning, Xu Tian-Tian, Zeng Hao-Sheng. Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping, Tang Ning, rm Wang Guo-You, Zeng Hao-Sheng. Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!