Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Interaction induced non-reciprocal three-level quantum transport |
Sai Li(李赛)1, Tao Chen(陈涛)1, Jia Liu(刘佳)1,2,†, and Zheng-Yuan Xue(薛正远)1,2,‡ |
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; 2 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Besides its fundamental importance, non-reciprocity has also found many potential applications in quantum technology. Recently, many quantum systems have been proposed to realize non-reciprocity, but stable non-reciprocal process is still experimentally difficult in general, due to the needed cyclical interactions in artificial systems or operational difficulties in solid state materials. Here, we propose a new kind of interaction induced non-reciprocal operation, based on the conventional stimulated-Raman-adiabatic-passage (STIRAP) setup, which removes the experimental difficulty of requiring cyclical interaction, and thus it is directly implementable in various quantum systems. Furthermore, we also illustrate our proposal on a chain of three coupled superconducting transmons, which can lead to a non-reciprocal circulator with high fidelity without a ring coupling configuration as in the previous schemes or implementations. Therefore, our protocol provides a promising way to explore fundamental non-reciprocal quantum physics as well as realize non-reciprocal quantum device.
|
Received: 20 September 2020
Revised: 07 March 2021
Accepted manuscript online: 12 March 2021
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874156 and 11904111) and the Project funded by China Postdoctoral Science Foundation (Grant No. 2019M652684). |
Corresponding Authors:
Jia Liu, Zheng-Yuan Xue
E-mail: liuj.phys@foxmail.com;zyxue83@163.com
|
Cite this article:
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远) Interaction induced non-reciprocal three-level quantum transport 2021 Chin. Phys. B 30 060314
|
[1] Deák L and Fülöp T 2012 Ann. Phys. 327 1050 [2] Devoret M H and Schoelkopf R J 2013 Science 339 1169 [3] Bharadia D, McMilin E and Katti S 2013 ACM SIGCOMM Comp. Commun. Rev. 43 375 [4] Aplet L J and Carson J W 1964 Appl. Opt. 3 544 [5] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447 [6] Kamal A, Roy A, Clarke J and Devoret M H 2014 Phys. Rev. Lett. 113 247003 [7] Kamal A and Metelmann A 2017 Phys. Rev. Appl. 7 034031 [8] Koch J, Houck A A, Hur K L and S M Girvin 2010 Phys. Rev. A 82 043811 [9] Umucalılar R O and Carusotto I 2011 Phys. Rev. A 84 043804 [10] Habraken S J M, Stannigel K, Lukin M D, Zoller P and P Rabl 2012 New J. Phys. 14 115004 [11] Wang Y P, Wang W, Xue Z Y, Yang W L, Hu Y and Wu Y 2015 Sci. Rep. 5 8352 [12] Sun F X, Mao D, Dai Y T, Ficek Z, He Q Y and Gong Q H 2017 New J. Phys. 19 123039 [13] Seif A, DeGottardi W, Esfarjani K and Hafezi M 2018 Nat. Commun. 9 1207 [14] Barfuss A, Kölbl J, Thiel L, Teissier J, Kasperczyk M and Maletinsky P 2018 Nat. Phys. 14 1087 [15] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167 [16] Fleury R, Sounas D and Alú A 2015 Nat. Commun. 6 5905 [17] Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902 [18] Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M and Feng L 2016 Science 353 464 [19] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 [20] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524 [21] Xu X W, Zhao Y J, Wang H, Chen A X and Liu Y X 2019 arxiv: 1908.08323 [22] Guo W, Chen T, Xie D Z, Xiao T, Deng T S, Gadway B, Yi W and Yang B 2020 Phys. Rev. Lett. 124 070402 [23] Fang K, Yu Z and Fan S 2012 Phys. Rev. Lett. 108 153901 [24] Hafezi M and Rabl P 2012 Opt. Express 20 7672 [25] Lira H, Yu Z, Fan S and Lipson M 2012 Phys. Rev. Lett. 109 033901 [26] Poulton C G, Pant R, Byrnes A, Fan S, Steel M J and Eggleton B J 2012 Opt. Express 20 21235 [27] Sounas D L, Caloz C and Alú A 2013 Nat. Commun. 4 2407 [28] Fleury R, Khanikaev A and Alú A 2016 Nat. Commun. 7 11744 [29] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901 [30] Estep N A, Sounas D L, Soric J and Alú A 2014 Nat. Phys. 10 923 [31] Reiskarimian N and Krishnaswamy H 2016 Nat. Commun. 7 11217 [32] Sounas D L and Alú A 2017 Nat. Photon. 11 774 [33] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 78 1 [34] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H and Martinis J 2017 Nat. Phys. 13 146 [35] Vepsäläinen A, Danilin S and Paraoanu G S 2019 Sci. Adv. 5 eaau5999 [36] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zhou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657 [37] Ruesink F, Miri M A, Alú A and Verhagen E 2016 Nat. Commun. 7 13662 [38] Xu H, Jiang L Y, Clerk A A and Harris J G E 2019 Nature 568 65 [39] Kumar K S, Vepsäläinen A, Danilin S and Paraoanu G S 2016 Nat. Commun. 7 10628 [40] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X and Zhao S P 2016 Nat. Commun. 7 11018 [41] You J Q and Nori F 2011 Nature 474 589 [42] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [43] Feng G, Xu G and Long G 2013 Phys. Rev. Lett. 110 190501 [44] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 [45] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [46] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009 [47] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S and Sun L 2019 Phys. Rev. Lett. 123 080501 [48] Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458 [49] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003 [50] Zhou J, Li S, Chen T and Xue Z Y 2019 Ann. Phys. 531 1800402 [51] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [52] Chu J, Li D Y, Yang X P, Song S Q, Han Z K, Yang Z, Dong Y Q, Zheng W, Wang Z M, Yu X M, Lan D, Tan X S and Yu Y 2020 Phys. Rev. Appl. 13 064012 [53] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z J, Chiaro B, Dunsworth A, Neill C, Omalley P J J, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|