Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048201    DOI: 10.1088/1674-1056/abe299
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
TOPICAL REVIEW—Quantum computation and quantum simulation Prev   Next  

Quantum simulations with nuclear magnetic resonance system

Chudan Qiu(邱楚丹)1, Xinfang Nie(聂新芳)1,†, and Dawei Lu(鲁大为)1,2,‡
1 Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 2 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Thanks to the quantum simulation, more and more problems in quantum mechanics which were previously inaccessible are now open to us. Capitalizing on the state-of-the-art techniques on quantum coherent control developed in past few decades, e.g., the high-precision quantum gate manipulating, the time-reversal harnessing, the high-fidelity state preparation and tomography, the nuclear magnetic resonance (NMR) system offers a unique platform for quantum simulation of many-body physics and high-energy physics. Here, we review the recent experimental progress and discuss the prospects for quantum simulation realized on NMR systems.
Keywords:  nuclear magnetic resonance      quantum simulation      quantum phase transition      quantum gravity  
Received:  13 October 2020      Revised:  04 January 2021      Accepted manuscript online:  03 February 2021
PACS:  82.56.-b (Nuclear magnetic resonance)  
  03.67.Lx (Quantum computation architectures and implementations)  
  05.30.Rt (Quantum phase transitions)  
  04.60.-m (Quantum gravity)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0308100), the National Natural Science Foundation of China (Grant Nos. 12075110, 11905099, 11605005, 11875159, and U1801661), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011383), Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20170303165926217, JCYJ20170412152620376, and JCYJ20180302174036418), and Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为) Quantum simulations with nuclear magnetic resonance system 2021 Chin. Phys. B 30 048201

1 Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
2 Wendin G 2017 Rep. Prog. Phys. 80 106001
3 Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P and Blatt R 2011 Nature 470 486
4 Blatt R and Roos C F 2012 Nat. Phys. 8 277
5 Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
6 Bloch I, Dalibard J and Nascimbene S 2012 Nat. Phys. 8 267
7 Saffman M 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 202001
8 Angelakis D G 2017 Quantum Science and Technology (Springer)
9 Flamini F, Spagnolo N and Sciarrino F 2018 Rep. Prog. Phys. 82 016001
10 Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
11 Childress L and Hanson R 2013 MRS Bulletin 38 134
12 Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
13 Chuang I L, Vandersypen L M, Zhou X, Leung D W and Lloyd S 1998 Nature 393 143
14 Jones J A, Mosca M and Hansen R H 1998 Nature 393 344
15 Somaroo S, Tseng C, Havel T, Laflamme R and Cory D G 1999 Phys. Rev. Lett. 82 5381
16 Peng X, Zhang J, Du J and Suter D 2009 Phys. Rev. Lett. 103 140501
17 Zhang J F, Yung M H, Laflamme R, Aspuru-Guzik A and Baugh J 2012 Nat. Commun. 3 1
18 Lu D W, Li K, Li J, Katiyar H, Park A J, Feng G, Xin T, Li H, Long G L, Brodutch A, Baugh J, Zeng B and Laflamme R 2017 Npj Quantum Inf. 3 48
19 Li J, Luo Z, Xin T, Wang H, Kribs D, Lu D, Zeng B and Laflamme R 2019 Phys. Rev. Lett. 123 030502
20 Cory D G, Fahmy A F and Havel T F 1997 Proc. Natl. Acad. Sci. USA 94 1634
21 Gershenfeld N A and Chuang I L 1997 Science 275 350
22 Knill E, Chuang I and Laflamme R 1998 Phys. Rev. A 57 3348
23 Knill E, Laflamme R, Martinez R and Tseng C H 2000 Nature 404 368
24 Trotter H F 1959 Proc. Am. Math. Soc. 10 545
26 Nielsen M A and Chuang I 2002 Quantum computation and quantum information (American Association of Physics Teachers)
27 Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T and Glaser S J 2005 J. Magn. Reson. 172 296
28 Chuang I L, Gershenfeld N and Kubinec M 1998 Phys. Rev. Lett. 80 3408
29 Shaka A, Keeler J, Smith M and Freeman R 1985 J. Magn. Reson. 61 175
30 Ryan C, Laforest M and Laflamme R 2009 New J. Phys. 11 013034
31 Hayden P and Preskill J 2007 J. High Energy Phys. 2007 120
32 Swingle B 2018 Nat. Phys. 14 988
33 Larkin A and Ovchinnikov Y N Sov. Phys. JETP 28 1200
34 Hosur P, Qi X L, Roberts D A and Yoshida B 2016 J. High Energy Phys. 2016 4
35 Hahn E L 1950 Phys. Rev. 80 580
36 Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011
37 Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13 781
38 Shenker S H and Stanford D 2015 J. High Energy Phys. 2015 132
39 Lieb E H and Robinson D W 1972 Statistical mechanics pp. 425-431 (Springer)
40 Roberts D A and Swingle B 2016 Phys. Rev. Lett. 117 091602
41 Kitaev A Talk given at the Fundamental Physics Prize Symposium Vol. 10
42 Shenker S H and Stanford D 2014 J. High Energy Phys. 2014 67
43 Maldacena J, Shenker S H and Stanford D 2016 J. High Energy Phys. 2016 106
44 Maldacena J and Stanford D 2016 Phys. Rev. D 94 106002
45 Lewis-Swan R, Safavi-Naini A, Kaufman A and Rey A 2019 Nat. Rev. Phys. 1 627
46 Khemani V, Lim S P, Sheng D and Huse D A 2017 Phys. Rev. X 7 021013
47 Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J and Greiner M 2019 Science 364 256
48 Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77
49 Wei K X, Ramanathan C and Cappellaro P 2018 Phys. Rev. Lett. 120 070501
50 Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202
51 Haeberlen U High Resolution NMR in solids selective averaging: supplement 1 advances in magnetic resonance Vol. 1(Elsevier)
52 Heyl M, Pollmann F and Dòra B 2018 Phys. Rev. Lett. 121 016801
53 Essler F H L, Evangelisti S and Fagotti M 2012 Phys. Rev. Lett. 109 247206
54 Sachdev S 2007 Quantum Phase Transitions p. 1
55 Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X and Monroe C 2017 Nature 551 601
56 Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D and Li J 2020 Phys. Rev. Lett. 124 250601
57 \vZunkovi\vc B, Heyl M, Knap M and Silva A 2018 Phys. Rev. Lett. 120 130601
58 Maldacena J and Susskind L 2013 Fortschr. Phys. 61 781
59 Ryu S and Takayanagi T 2006 Phys. Rev. Lett. 96 181602
60 Lewkowycz A and Maldacena J 2013 J. High Energy Phys. 2013 90
61 Li K, Han M, Qu D, Huang Z, Long G, Wan Y, Lu D, Zeng B and Laflamme R 2019 Npj Quantum Inf. 5 30
62 Pastawski F, Yoshida B, Harlow D and Preskill J 2015 J. High Energy Phys. 2015 1
63 Rovelli C and Smolin L 1995 Nucl. Phys. B 442 593
64 Rovelli C and Vidotto F 2014 Covariant loop quantum gravity: an elementary introduction to quantum gravity and spinfoam theory (Cambridge University Press)
65 Barbieri A 1998 Nucl. Phys. B 518 714
66 Li K, Li Y, Han M, Lu S, Zhou J, Ruan D, Long G, Wan Y, Lu D, Zeng B and Laflamme R 2019 Commun. Phys. 2 1
67 Rovelli C and Speziale S 2006 Classical Quantum Gravity 23 5861
68 Engle J, Livine E, Pereira R and Rovelli C 2008 Nucl. Phys. B 799 136
69 Ma X, Jackson T, Zhou H, Chen J, Lu D, Mazurek M D, Fisher K A, Peng X, Kribs D, Resch K J, Ji Z, Zeng B and Laflamme R 2016 Phys. Rev. A 93 032140
70 Lu D, Xin T, Yu N, Ji Z, Chen J, Long G, Baugh J, Peng X, Zeng B and Laflamme R 2016 Phys. Rev. Lett. 116 230501
71 Wang H, Zheng W, Yu N, Li K, Lu D, Xin T, Li C, Ji Z, Kribs D, Zeng B, Peng X and Du J 2016 Sci. China, Ser. A: Math. Phys. Astron. 59 100313
72 Xin T, Lu D, Klassen J, Yu N, Ji Z, Chen J, Ma X, Long G, Zeng B and Laflamme R 2017 Phys. Rev. Lett. 118 020401
73 Xin T, Lu S, Cao N, Anikeeva G, Lu D, Li J, Long G and Zeng B 2019 Npj Quantum Inf. 5 109
74 Lu D, Zhu J, Zou P, Peng X, Yu Y, Zhang S, Chen Q and Du J 2010 Phys. Rev. A 81 022308
75 Xu N, Zhu J, Lu D, Zhou X, Peng X and Du J 2012 Phys. Rev. Lett. 108 130501
76 Xin T, Wei S, Cui J, Xiao J, Arrazola I, Lamata L, Kong X, Lu D, Solano E and Long G 2020 Phys. Rev. A 101 032307
77 Li K, Wan Y, Hung L Y, Lan T, Long G, Lu D, Zeng B and Laflamme R 2017 Phys. Rev. Lett. 118 080502
78 Park A J, McKay E, Lu D and Laflamme R 2016 New J. Phys. 18 043043
79 Luo Z, You Y Z, Li J, Jian C M, Lu D, Xu C, Zeng B and Laflamme R 2019 Npj Quantum Inf. 5 53
80 Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C and Cappellaro P 2019 Phys. Rev. Lett. 123 090605
81 àlvarez G A and Suter D 2010 Phys. Rev. Lett. 104 230403
82 Chen H, Lu D, Chong B, Qin G, Zhou X, Peng X and Du J 2011 Phys. Rev. Lett. 106 180404
83 Li Z, Liu X, Wang H, Ashhab S, Cui J, Chen H, Peng X and Du J 2019 Phys. Rev. Lett. 122 090504
84 Wen J W, Qin G Q, Zheng C, Wei S J, Kong X Y, Xin T and Long G L 2020 Npj Quantum Inf. 6 28(2020)
85 Wang B X, Tao M J, Ai Q, Xin T, Lambert N, Ruan D, Cheng Y C, Nori F, Deng F G,Long G L 2018 Npj Quantum Inf. 4 52(2018)
86 Cai J, Retzker A, Jelezko F and Plenio M B 2013 Nat. Phys. 9 168
[1] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[2] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[3] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[4] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[5] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[6] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[7] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[8] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[9] Review of quantum simulation based on Rydberg many-body system
Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森). Chin. Phys. B, 2021, 30(2): 020307.
[10] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[11] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[12] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[13] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[14] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[15] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[3] Wu Jian-Rong, Song Shi-Ji. Filtering for linear systems with noise correlation and its application to singular systems[J]. Chin. Phys., 2004, 13(12): 1977 -1981 .
[4] Zhou Hai-Feng, Yang Jian-Yi, Wang Ming-Hua, Jiang Xiao-Qing. Steering light into logic patterns with two-dimensional cascaded multimode waveguide[J]. Chin. Phys., 2007, 16(3): 740 -745 .
[5] Sun Xian-Ping, Zeng Xi-Zhi, Zhan Ming-Sheng, Luo Jun. Optical pumping and population transfer of nuclear-spin states of caesium atoms in high magnetic fields[J]. Chin. Phys., 2007, 16(4): 998 -1007 .
[6] Cao Zhuo-Liang, Li Da-Chuang. Scheme for teleportation of an unknown atomic state via a cluster state in cavity QED[J]. Chin. Phys. B, 2008, 17(1): 55 -59 .
[7] Liao Xiang-Ping, Fang Mao-Fa, Cai Jian-Wu, Zheng Xiao-Juan. The entanglement of two dipole--dipole coupled atoms interacting with a thermal field via a two-photon process[J]. Chin. Phys. B, 2008, 17(6): 2137 -2142 .
[8] Kong Cui-Cui, Chen Shi-Hua. Synchronization of noise-perturbed generalized Lorenz system by sliding mode control[J]. Chin. Phys. B, 2009, 18(1): 91 -97 .
[9] Zhou Guo-Quan. Fractional Fourier transform of Lorentz beams[J]. Chin. Phys. B, 2009, 18(7): 2779 -2784 .
[10] Wang Li, Sun Jian-Feng, Wang Qi. Spin-image surface matching based target recognition in laser radar range imagery[J]. Chin. Phys. B, 2010, 19(10): 104203 .