Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057304    DOI: 10.1088/1674-1056/abdb1a
DATA PAPER Prev   Next  

High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states

Feng Lu(卢峰)1, Jintao Cui(崔锦韬)1, Pan Liu(刘盼)1, Meichen Lin(林玫辰)1, Yahui Cheng(程雅慧)1, Hui Liu(刘晖)1, Weichao Wang(王卫超)1, Kyeongjae Cho2, and Wei-Hua Wang(王维华)1,†
1 Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Engineering Research Center of Thin Film Optoelectronics Technology(Ministry of Education), Nankai University, Tianjin 300350, China;
2 Department of Material Science and Engineering, the University of Texas at Dallas, Richardson, 75080, USA
Abstract  Low dimensional materials are suitable candidates applying in next-generation high-performance electronic, optoelectronic, and energy storage devices because of their uniquely physical and chemical properties. In particular, one-dimensional (1D) atomic wires (AWs) exfoliating from 1D van der Waals (vdW) bulks are more promising in next generation nanometer (nm) even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states. Although several 1D AWs have been experimentally prepared, few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs. Herein, 367 kinds of 1D AWs have been screened and the corresponding computational database including structures, electronic structures, magnetic states, and stabilities of these 1D AWs has been organized and established. Among these systems, unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated. More significantly, rich quantum states emerge, such as 1D semiconductors, 1D metals, 1D semimetals, and 1D magnetism. This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials. The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.
Keywords:  high-throughput calculation      one-dimensional atomic wires      electronic structure      first principles calculation  
Received:  04 December 2020      Revised:  09 January 2021      Accepted manuscript online:  13 January 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0129000) and the National Natural Science Foundation of China (Grant Nos. 51871121, 11874223, and 11404172).
Corresponding Authors:  Wei-Hua Wang     E-mail:  whwangnk@nankai.edu.cn

Cite this article: 

Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华) High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states 2021 Chin. Phys. B 30 057304

[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[3] Yang C, Liu Z, Shi W and Zhang C 2019 Appl. Phys. Express 12 082009
[4] Jiang P, Tao X, Kang L, Hao H, Song L, Lan J, Zheng X, Zhang L and Zeng Z 2017 J. Mater. Chem. C 5 9066
[5] Liu P, Lu F, Wu M, Luo X, Cheng Y, Wang X, Wang W, Wang W H, Liu H and Cho K 2017 J. Mater. Chem. C 5 9066
[6] Wu M, Liu P, Xin B, Li L, Dong H, Cheng Y, Wang W, Lu F, Cho K, Wang W H and Liu H 2019 Appl. Phys. Lett. 114 171601
[7] Chen W, Qu Y, Yao L, Hou X, Shi X and Pan H 2018 J. Mater. Chem. A 6 8021
[8] Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun. 10 2657
[9] Ma Xin, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
[10] Song L, Zhang L, Guan Y, Lu J, Yan C and Cai J 2019 Chin. Phys. B 28 037101
[11] Ju S, Wu M, Yang H, Wang N, Zhang Y, Wu Peng, Wang P, Zhang B, Mu K, Li Y, Guan D, Qian D, Lu F, Liu D, Wang W H, Chen X and Sun Z 2018 Chin. Phys. Lett. 35 077102
[12] Xie Y, Feng J, Xiang H and Gong X 2019 Chin. Phys. Lett. 36 056801
[13] Pan B, Xiao J, Li J, Liu P, Wang C and Yang G 2015 Sci. Adv. 1 e1500857
[14] Li X, Lv H, Dai J, Ma L, Zeng X C, Wu X and Yang J 2017 J. Am. Chem. Soc. 139 6290
[15] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[16] Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091
[17] Lee J, Schmitt F, Moore R, Johnston S, Cui Y T, Li W, Yi M, Liu Z, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[18] Yan H, Hohman J N, Li F H, Jia C, Solis-Ibarra D, Wu B, Dahl J, Carlson R, Tkachenko B A, Fokin A A, Schreiner P R,Vailions A, Kim T R, Devereaux T P, Shen Z X and Melosh N A 2017 Nat. Mater. 16 349
[19] Peierls R E 1955 Quantum theory of solids (Oxford: Clarendon)
[20] Liu M, Artyukhov V I and Yakobson B I 2017 J. Am. Chem. Soc. 139 2111
[21] Tomonaga S 1950 Prog. Theor. Phys. 5 544
[22] Luttinger J M 1963 J. Math. Phys. 4 1154
[23] Japaridze G I and Nersesyan A A 2019 Phys. Rev. B 99 035134
[24] Tang Z K, Zhang L, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462
[25] Caruso F, Filip M R and Giustino F 2015 Phys. Rev. B 92 125134
[26] Lee W G, Chae S, Chung Y K, Oh S, Choi J Y and Huh J 2019 Phys. Status Solidi RRL 13 1800517
[27] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29 1606264
[28] Wan Y, Sun Y, Wu X and Yang J 2018 J. Phys. Chem. C 122 989
[29] Sen R and Johari P 2019 ACS Appl. Mater. Inter. 11 12733
[30] Zhang Z, Murayama T, Sadakane M, Ariga H, Yasuda N, Sakaguchi N, Asakura K and Ueda W 2015 Nat. Commun. 6 7731
[31] Peng B, Xu K, Zhang H, Ning Z, Shao H, Ni G, Li J, Zhu Y, Zhu H and Soukoulis C M 2018 Adv. Theory Simul. 1 1700005
[32] Gao Y and Xu B 2018 ACS Appl. Mater. Inter. 10 14221
[33] Liu Y, Huang Y and Duan X 2019 Nature 567 323
[34] Cheon G, Duerloo K N, Sendek A D, Porter C, Chen Y and Reed E J 2017 Nano Lett. 17 1915
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[38] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[39] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[40] Hellenbrandt M 2004 Crystallogr. Rev. 10 17
[41] Belsky A, Hellenbrandt M, Karen V L and Luksch P 2002 Acta Crystallogr. Sect. B Struct. Sci. 58 364
[42] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[43] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[44] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[45] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486
[46] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[47] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[48] Choudhary K, Kalish I, Beams R and Tavazza F 2017 Sci. Rep. 7 5179
[49] Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartus S P, Payton O D, Skipper N T, Tileli V and Howard C A 2019 Nature 568 216
[1] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[2] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[5] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[6] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[7] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[10] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[11] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[12] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[13] Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[14] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[15] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
No Suggested Reading articles found!