Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037304    DOI: 10.1088/1674-1056/abd163
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC — Phononics and phonon engineering Prev   Next  

Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms

Cheng-Wei Wu(吴成伟)1, Changqing Xiang(向长青)2, Hengyu Yang(杨恒玉)1, Wu-Xing Zhou(周五星)1,†, Guofeng Xie(谢国锋)1, Baoli Ou(欧宝立)1, and Dan Wu(伍丹)3,
1 School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China; 2 College of Information Science and Engineering, Jishou University, Jishou 416000, China; 3 School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China
Abstract  Using the first principles calculation and Boltzmann transport theory, we study the thermoelectric properties of Si2BN adsorbing halogen atoms (Si2BN-4X, $X=\textF$, Cl, Br, and I). The results show that the adsorption of halogen atoms can significantly regulate the energy band structure and lattice thermal conductivity of Si2BN. Among them, Si2BN-4I has the best thermoelectric performance, the figure of merit can reach 0.50 K at 300 K, which is about 16 times greater than that of Si2BN. This is because the adsorption of iodine atoms not only significantly increases the Seebeck coefficient due to band degeneracy, but also rapidly reduces the phonon thermal conductivity by enhancing phonon scattering. Our work proves the application potential of Si2BN-based crystals in the field of thermoelectricity and the effective method for metal crystals to open bandgaps by adsorbing halogens.
Keywords:  density functional theory      thermoelectric effects      transport properties      electronic structure  
Published:  18 February 2021
PACS:  71.15.-m (Methods of electronic structure calculations)  
  73.50.Lw (Thermoelectric effects)  
  74.25.F- (Transport properties)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074115, 11874145, and 51775183) and the Hunan Provincial Natural Science Fund of China (Grant No. 2018JJ2125).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹) Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms 2021 Chin. Phys. B 30 037304

1 Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
2 Pei Y Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
3 Jiang P H, Liu H J, Cheng L, Fang D D, Zhang J, Wei J, Liang J H and Shi J 2017 Carbon 113 108
4 Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
5 Kovnir K and Toberer E S 2016 Chemistry of Materials 28 2463
6 Chetty R, Bali A and Mallik R C 2015 J. Mater. Chem. C 3 12364
7 Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
8 Zhou X Y, Yan Y C, Lu X, Zhu H T, Han X D, Chen G and Ren Z F 2018 Materials Today 21 974
9 Hatam-Lee S M, Rajabpour A and Volz S 2020 Carbon 161 816
10 Liang T, Zhang P, Yuan P, Zhai S P and Yang D G 2019 Nano Futures 3 015001
11 Wang X N and Tabarraei A 2016 Appl. Phys. Lett. 108 191905
12 Hinterleitner B, Knapp I, Poneder M, Shi Y P, M\"uller H, Eguchi G, Eisenmenger-Sittner G, St\"oger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q and Bauer E 2019 Nature 576 85
13 Zhou W X and Chen K Q 2015 Sci. Rep. 4 7150
14 Chen X K, Liu J, Peng Z H, Du D and Chen K Q 2017 Appl. Phys. Lett. 110 091907
15 Xie G F, Ding D and Zhang G 2018 Advances in Physics: X 3 1480417
16 Xie Z X, Liu J Z, Yu X, Wang H B, Deng Y X, Li K M and Zhang Y 2015 J. Appl. Phys. 117 114308
17 Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
18 Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. China Phys. Mech. Astron. 63 276811
19 Gu X K, Wei Y J, Yin X B, Li B W and Yang R G 2018 Rev. Mod. Phys. 90 041002
20 Xu X F, Chen J and Li B W 2016 J. Phys.: Condens. Matter 28 483001
21 Wang J, Zhu L, Chen J, Li B and Thong JTL 2013 Adv. Mater. 25 6884
22 Liu Z Y, Wu X F and Luo T F 2017 2D Mater. 4 025002
23 Sun Y Y, Chen L, Cui L, Zhang Y W and Du X Z 2018 Computational Materials Science 148 176
24 Xu M, Wang H Y, Sun S S, Li H T, Li X M, Chen Y Z and Ni Y X 2020 Phys. Status Solidi B 257 1900205
25 Nguyen D K, Tran N T T, Chiu Y H and Lin M F 2019 Sci. Rep. 9 13746
26 Kishore M R A, Sjåstad A O and Ravindran P 2019 Carbon 141 50
27 Andriotis A N, Richter E and Menon M 2016 Phys. Rev. B 93 081413
28 Shukla V K, Araujo R B, Jena N K and Ahuja R 2017 Nano Energy 41 251
29 Singh D, Gupta S K, Sonvane Y, Hussain T and Ahuja R 2018 Phys. Chem. Chem. Phys. 20 21716
30 Singh D, Gupta S K, Sonvane Y and Ahuja R 2017 International Journal of Hydrogen Energy 42 22942
31 Singh D, Chakraborty S and Ahuja R 2019 ACS Applied Energy Materials 2 8441
32 Yeoh K H, Yoon T L, Ong D S, Lim T L and Abdullahi Y Z 2017 Phys. Chem. Chem. Phys. 19 25786
33 Kresse G and Furthmu\"uller J 1996 Phys. Rev. B 54 11169
34 He Y, Zhang M, Shi J J, Cen Y L and Wu M 2019 J. Phys. Chem. C 123 12781
35 Deng T Q, Yong X, ShiW, Gan C K, LiW, Hippalgaonkar K, Zheng J C, Wang X B, Yang S W, Wang J S and Wu G 2019 Adv. Electron. Mater. 5 1800892
36 Zhou W X, Wu D, Xie G F, Chen K Q and Zhang G 2020 ACS Omega 5 5796
37 Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
38 Hung N T, Nugraha A R T, Hasdeo E H, Dresselhaus M S and Saito R 2015 Phys. Rev. B 92 165426
39 Maurya V and Joshi K B 2019 J. Alloys Compd. 779 971
40 Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923
41 Madsen G K H and Singh D J 2006 Computer Physics Communications 175 67
42 Wang J, Xie F, Cao X H, An S C, Zhou W X, Tang L M and Chen K Q 2017 Sci. Rep. 7 41418
43 Gandi A N, Alshareef H N and Schwingenschl\"ogl U 2016 Chemistry of Materials 28 1647
44 Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
45 Zhang Q Q, Jia P Z, Chen X K, Zhou W X and Chen K Q 2020 J. Phys.: Condens. Matter 32 305301
46 Gu X K and Yang R G 2014 Appl. Phys. Lett. 105 131903
47 Klemens P G 2000 J. Wide Bandgap Mater. 7 332
48 Morelli D T, Heremans J P and Slack G A 2002 Phys. Rev. B 66 195304
49 Chen X K and Chen K Q 2020 J. Phys.: Condes. Matter 32 153002
50 Mahida H R, Singh D, Sonvane Y, Thakor P B, Ahuja R and Gupta S K 2019 J. Appl. Phys. 126 233104
51 Peng B, Zhang D Q, Zhang H, Shao H Z, Ni G, Zhu Y Y and Zhu H Y 2017 Nanoscale 9 7397
52 Wu J, Chen Y B, Wu J Q and Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248
53 Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
54 Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
55 Zhao, L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
56 Yu J B, Li T W and Sun Q 2019 J. Appl. Phys. 125 205111
57 Kumar S and Schwingenschl\"ogl U 2016 Phys. Rev. B 94 035405
58 Yu J B, Li, T W, Nie G, Zhang B P and Sun Q 2019 Nanoscale 11 10306
[1] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[2] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] Detailed structural, mechanical, and electronic study of five structures for CaF 2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[8] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[9] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[10] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[11] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[12] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[13] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[14] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[15] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
No Suggested Reading articles found!