Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 015202    DOI: 10.1088/1674-1056/abc53b
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas

Yan-Ning Zhang(张艳宁)1, 2, Zhi-Gang Wang(王志刚)2, Yong-Tao Zhao(赵永涛)1, and Bin He(何斌)2,
1 School of Science, Xi'an Jiaotong University, Xi'an 710049, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Based on our previous work (Phys. Plasmas 25 012704 (2018)), a fitting formula is given for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in deuterium-tritium (DT) plasmas as a function of plasma mass density ρ , electron temperature T e , and ion temperature T i. The formula can be used in a huge range of the plasma state, where ρ varies between 1.0 g/cc∼ 10.03 g/cc and both T e and T i change from 0.1 keV to 100.0 keV. Relativistic effect for electrons is investigated including the effect of the projectile recoil in the plasmas at T e ≥ 50.0 keV. The partition fraction for T e>T i is found to be close to that for T e=T i. The comparisons with other fitting results are made at some plasma densities when T e=T i, and the difference is explained. The fitting result is very close to the calculated one in most cases, which is convenient for the simulation of alpha heating in hot dense DT plasmas for inertial confined fusion.
Keywords:  inertial confinement fusion      deuterium-tritium plasma      alpha heating      energy loss  
Revised:  19 October 2020      Published:  30 December 2020
PACS:  52.40.Mj (Particle beam interactions in plasmas)  
  34.50.Bw (Energy loss and stopping power)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.58.Hm (Heavy-ion inertial confinement)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0402300 and 2017YFA0403200), the National Natural Science Foundation of China (Grant No. 11574034), the Innovation Development Foundation of China Academy of Engineering Physics (CAEP) (Grant No. CX20200029), and the Science Challenge Project (Grant Nos. JCKY201612A501).
Corresponding Authors:  Corresponding author. E-mail: hebin-rc@163.com   

Cite this article: 

Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌) A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas 2021 Chin. Phys. B 30 015202

1 Trubnikov B A1965 Reviews of Plasma Physics, Vol. 1(New York: Consultants Bureau) p. 105
2 Deutsch C and Maynard G 2016 Matter and Radiation at Extremes 1 277
3 Kawata S, Karino T and Ogoyski A I 2016 Matter and Radiation at Extremes 1 89
4 Long K A and Tahir N A 1986 Nuclear Fusion 26 555
5 Miller G H, Moses E I and Wuest C R 2004 Nuclear Fusion 44 S228
6 Fraley G S, Linnebur E L, Mason R J and Morse R L 1974 Phys. Fluids 17 474
7 Butler T and Buckingham M J 1962 Phys. Rev. 126 1
8 Atzeni S and Meyer-ter-Vehn J2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) p. 403
9 Sigmar D J and Joyce G 1971 Nuclear Fusion 11 447
10 Ichimaru S1973 Basic principles of plasma physics (Boca Raton: CRC Press) p. 324
11 Li C K and Petrasso R D 1993 Phys. Rev. Lett. 70 3059
12 Brown L S, Preston D L and Singleton R L Jr 2012 Phys. Rev. E 86 016406
13 L S Brown, D L Preston and Singleton R L Jr 2005 Phys. Rep. 410 237
14 He B, Wang Z G and Wang J G 2018 Phys. Plasmas 25 012704
15 Prentice A J R 1967 Plasma Phys. 9 433
16 Akhiezer A I, Akhiezer I A, Polovin R V, Sitenko A G and Stepanov K N1975 Plasma Electrodynamics, Vol. 2(Oxford: Pergamon Press Ltd.) p. 288
17 Kraeft W D and Strege B 1988 Physica A 149 313
18 Morawetz K and Ropke G 1996 Phys. Rev. E 54 4134
19 Maynard G and Deutsch C 1985 J. Physique 46 1113
20 Arista N R and Brandt W 1981 Phys. Rev. A 23 1898
21 He B and Wang J G 2013 Nuclear Fusion 53 093009
[1] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[2] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[3] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[4] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[5] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[6] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[7] Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells
Ming Lu(鲁明), Jing Xu(徐晶), Jian-Wei Huang(黄建微). Chin. Phys. B, 2016, 25(9): 098402.
[8] Fast-electron-impact study on excitations of 4d electron of xenon
Zhang Xin, Liu Ya-Wei, Peng Yi-Geng, Xu Long-Quan, Ni Dong-Dong, Kang Xu, Wang Yang-Yang, Qi Yue-Ying, Zhu Lin-Fan. Chin. Phys. B, 2015, 24(12): 123401.
[9] A double toroidal analyzer for scanning probe electron energy spectrometer
Xu Chun-Kai, Zhang Pan-Ke, Li Meng, Chen Xiang-Jun. Chin. Phys. B, 2014, 23(7): 073402.
[10] Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility
Wang Feng, Peng Xiao-Shi, Kang Dong-Guo, Liu Shen-Ye, Xu Tao. Chin. Phys. B, 2013, 22(11): 115204.
[11] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
Zhao Zong-Qing, He Wei-Hua, Wang Jian, Hao Yi-Dan, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Chin. Phys. B, 2013, 22(10): 104202.
[12] Emission spectrum from an Al/Mg tracer in the blow-off region of a radiatively ablated capsule
Pu Yu-Dong, Chen Bo-Lun, Zhang Lu, Yang Jia-Min, Huang Tian-Xuan, Ding Yong-Kun. Chin. Phys. B, 2011, 20(9): 095203.
[13] Analysis of Ar line spectra from indirectly-driven implosion experiments on SGII facility
Pu Yu-Dong, Zhang Ji-Yan, Yang Jia-Min, Huang Tian-Xuan, Ding Yong-Kun. Chin. Phys. B, 2011, 20(1): 015202.
[14] Effects of electron radiation on shielded space and triple-junction GaAs solar cells
Gao Xin, Yang Sheng-Sheng, Xue Yu-Xiong, Li Kai, Li Dan-Ming, Wang Yi, Wang Yun-Fei, Feng Zhan-Zu. Chin. Phys. B, 2009, 18(11): 5015-5019.
[15] Three-dimensional size and orientation of the precipitates in AZ91 magnesium alloys measured by TEM techniques
Zheng Ou, Ma Jia-Yan, Wang Jian-Bo, Zhou Jia-Ping, Jin Lei, Zhao Dong-Shan, Wang Ren-Hui. Chin. Phys. B, 2009, 18(10): 4370-4379.
No Suggested Reading articles found!