Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 025206    DOI: 10.1088/1674-1056/27/2/025206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Rayleigh-Taylor instability at spherical interfaces of incompressible fluids

Hong-Yu Guo(郭宏宇)1,2, Li-Feng Wang(王立锋)2,3, Wen-Hua Ye(叶文华)2,3, Jun-Feng Wu(吴俊峰)2, Ying-Jun Li(李英骏)4, Wei-Yan Zhang(张维岩)2,3
1. Graduate School, China Academy of Engineering Physics, Beijing 100088, China;
2. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
3. HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
4. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract  Rayleigh-Taylor instability (RTI) of three incompressible fluids with two interfaces in spherical geometry is derived analytically. The growth rate on the two interfaces and the perturbation feedthrough coefficients between two spherical interfaces are derived. For low-mode perturbation, the feedthrough effect from outer interface to inner interface is much more severe than the corresponding planar case, while the feedback from inner interface to the outer interface is smaller than that in planar geometry. The low-mode perturbations lead to the pronounced RTI growth on the inner interface of a spherical shell that are larger than the cylindrical and planar results. It is the low-mode perturbation that results in the difference between the RTI growth in spherical and cylindrical geometry. When the mode number of the perturbation is large enough, the results in cylindrical geometry are recovered.
Keywords:  Rayleigh-Taylor instability      spherical geometry      inertial confinement fusion  
Received:  26 September 2017      Revised:  15 November 2017      Accepted manuscript online: 
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275031, 11475034, 11575033, 11574390, and 11274026) and the National Basic Research Program of China (Grant Nos. 2013CB834100 and 2013CBA01504).
Corresponding Authors:  Wen-Hua Ye, Ying-Jun Li     E-mail:  ye_wenhua@iapcm.ac.cn;lyj@aphy.iphy.ac.cn
About author:  52.57.Fg; 47.20.Ma; 52.35.Py

Cite this article: 

Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩) Rayleigh-Taylor instability at spherical interfaces of incompressible fluids 2018 Chin. Phys. B 27 025206

[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170
[2] Taylor G 1950 Proc. R. Soc. Lond. A 201 192
[3] Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Sinars D B, Slutz S A, Owen A C, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Robertson G K, Rochau G A, Savage M E, Schroen D G and Stygar W A 2014 Phys. Plasmas 21 056303
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[5] Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K and Zhang W Y 2017 Sci. China-Phys. Mech. Astron. 60 055201
[6] Guo H Y, Yu X J, Wang L F, Ye W H, Wu J F and Li Y J 2014 Chin. Phys. Lett. 31 044702
[7] Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett. 34 045201
[8] Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett. 34 075201
[9] Garnier J and Masse L 2005 Phys. Plasmas 12 062707
[10] Wang L F, Ye W H and Li Y J 2010 Phys. Plasmas 17 042103
[11] Yang B L, Wang L F, Ye W H and Xue C 2011 Phys. Plasmas 18 072111
[12] Mikaelian K O 1982 Phys. Rev. A 26 2140
[13] Mikaelian K O 1983 Phys. Rev. A 28 1637
[14] Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710
[15] Yu H D and Livescu D 2008 Phys. Fluids 20 104103
[16] Terrones G and Carrara M D 2015 Phys. Fluids 27 054105
[17] Zhang J, Wang L F, Ye W H, Wu J F, Guo H Y, Zhang W Y and He X T 2017 Phys. Plasmas 24 062703
[18] Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. B 26 125202
[19] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
[20] Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M and Yu M Y 2012 Phys. Plasmas 19 100701
[21] Yan R, Betti R, Sanz J, Aluie H, Liu B and Frank A 2016 Phys. Plasmas 23 022701
[22] Hsing W W, Barnes C W, Beck J B, Hoffman N M, Galmiche D, Richard A, Edwards J, Graham P, Rothman S and Thomas B 1997 Phys. Plasmas 4 1832
[23] Wilkinson J P and Jacobs J W 2007 Phys. Fluids 19 124102
[24] Simakov A N, Wilson D C, Yi S A, Kline J L, Clark D S, Milovich J L, Salmonson J D and Batha S H 2014 Phys. Plasmas 21 022701
[25] Yi S A, Simakov A N, Wilson D C, Olson R E, Kline J L, Clark D S, Hammel B A, Milovich J L, Salmonson J D, Kozioziemski B J and Batha S H 2014 Phys. Plasmas 21 092701
[26] Haan S W 1989 Phys. Rev. A 39 5812
[27] Dittrich T R, Hurricane O A, Callahan D A, Dewald E L, Doppner T, Hinkel D E, Berzak Hopkins L F, LePape S, Ma T, Milovich J, Moreno J C, Patel P K, Park H S, Remington B A and Salmonson J 2014 Phys. Rev. Lett. 112 055002
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[3] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[4] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[5] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[6] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[7] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[8] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[9] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[10] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[11] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[12] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[13] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[14] Cylindrical effects in weakly nonlinear Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Ma Wen-Fang (马文芳), Wang Xu-Lin (王绪林). Chin. Phys. B, 2015, 24(1): 015202.
[15] Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Yu Chang-Ping (于长平), Ye Wen-Hua (叶文华), Wang Li-Feng (王立峰). Chin. Phys. B, 2014, 23(9): 094502.
No Suggested Reading articles found!