Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 013301    DOI: 10.1088/1674-1056/ab5a39
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse

Quan-Jun Wang(王全军)1, Rao Chen(陈娆)1, Jia-Chen Zhao(赵家琛)1, Chun-Lin Sun(孙春霖)2, Xiao-Zhen Wang(王小珍)2, Jing-Jie Ding(丁晶洁)1, Zuo-Ye Liu(刘作业)1, Bi-Tao Hu(胡碧涛)1
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
Abstract  The spectral attenuation of a 400-nm probe laser propagating through a femtosecond plasma in air is studied. Defocusing effect of the low-density plasma is an obvious effect by examining the far-field patterns of the 400-nm pulse. Besides, the energy of 400-nm pulse drops after interaction with the plasma, which is found to be another effect leading to the attenuation. To reveal the physical origin behind the energy loss, we measure fluorescence emissions of the interaction area. The fluorescence is hardly detected with the weak 400-nm laser pulse, and the line spectra from the plasma filament induced by the 800-nm pump pulse are clearly shown. However, when the 400-nm pulse propagates through the plasma filament, the fluorescence at 391 nm from the first negative band system of N2+ is enhanced, while that from the second positive band of neutral N2 at 337 nm remains constant. Efficient near-resonant absorption of the 400-nm pulse by the first negative band system occurs inside the plasma, which results in the enhanced fluorescence. Furthermore, the spectral attenuation of the 400-nm probe laser is measured as a function of the pump-probe time delay as well as the pump-pulse energy.
Keywords:  defocusing effect      energy loss      enhanced fluorescence  
Received:  05 August 2019      Revised:  04 November 2019      Accepted manuscript online: 
PACS:  33.50.Dq (Fluorescence and phosphorescence spectra)  
  42.65.-k (Nonlinear optics)  
  42.68.Ca (Spectral absorption by atmospheric gases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1932133, 51733004, 51525303, and 21702085) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2016-35 and lzujbky-2018-it36).
Corresponding Authors:  Zuo-Ye Liu     E-mail:  zyl@lzu.edu.cn

Cite this article: 

Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛) Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse 2020 Chin. Phys. B 29 013301

[1] Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47
[2] Chin S L 2010 Femtosecond laser filamentation, Vol. 55 (New York: Springer) pp. 1-55
[3] Kasparian J, Rodríguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, André Y B, Mysyrowicz A, Sauerbrey R, Wolf J P and Wöste L 2003 Science 301 61
[4] Liu J, Dai J, Chin S L and Zhang X C 2010 Nat. Photon. 4 627
[5] Yuan S, Chin S L and Zeng H 2015 Chin. Phys. B 24 014208
[6] Miki M and Wada A 1996 J. Appl. Phys. 80 3208
[7] Xu H, Méjean G, Liu W, Kamali Y, Daigle J F, Azarm A, Simard P, Mathieu P, Roy G, Simard J R and Chin S L 2007 Appl. Phys. B 87 151
[8] Liu Y, Houard A, Prade B, Akturk S, Mysyrowicz A and Tikhonchuk V 2007 Phys. Rev. Lett. 99 135002
[9] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S amd Nisoli M 2006 Science 314 443
[10] Filin A, Compton R, Romanov D and Levis R 2009 Phys. Rev. Lett. 102 155004
[11] Shi L, Li W, Wang Y, Lu X and Zeng H 2011 Phys. Rev. Lett. 107 095004
[12] Tzortzakis S, Prade B, Franco M and Mysyrowicz A 2000 Opt. Commun. 181 123
[13] Liu Y, Durand M, Chen S, A. Houard, Prade B, Forestier B and Mysyrowicz A 2010 Phys. Rev. Lett. 105 055003
[14] Ding J, Ding P, Liu Z and Hu B 2016 Sci. China- Phys. Mech. Astron. 59 633001
[15] Chin S L and Xu H 2015 Chin. Phys. B 24 013301
[16] Xu H, Lötstedt E, Iwasaki A and Yamanouchi K 2015 Nat. Commun. 6 8347
[17] Yao J, Jiang S, Chu W, Zeng B, Wu C, Lu R, Li Z, Xie H, Li G, Yu C, Wang Z, Jiang H, Gong Q and Cheng Y 2016 Phys. Rev. Lett. 116 143007
[18] Lei M, Wu C, Zhang A, Gong Q and Jiang H 2017 Opt. Express 25 4535
[19] Liu Y, Ding P, Ibrakovic N, Bengtsson S, Chen S, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z, Houard A, Mauritsson J, L'Huillier A, Arnold C L, Zhuang S, Tikhonchuk V and Mysyrowicz A 2017 Phys. Rev. Lett. 119 203205
[20] Zhong X, Miao Z, Zhang L, Liang Q, Lei M, Jiang H, Liu Y, Gong Q and Wu C 2017 Phys. Rev. A 96 043422
[21] Liu Z, Yao J, Chen J, Xu B, Chu W and Cheng Y 2018 Phys. Rev. Lett. 120 083205
[22] Ni J, Chu W, Jing C, Zhang H, Zeng B, Yao J, Li G, Xie H, Zhang C, Xu H, Chin S L, Cheng Y and Xu Z 2013 Opt. Express 21 8746
[23] Azarm A, Ramakrishna S, Talebpour A, Hosseini S, Teranishi Y, Xu H, Kamali Y, Bernhardt J, Lin S, Seideman T and Chin S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 235602
[24] Liu J, Duan Z, Zeng Z, Xie X, Deng Y, Li R, Xu Z and Chin S L 2005 Phys. Rev. E 72 026412
[25] Théberge F, Liu W, Simard P T, Becker A and Chin S L 2006 Phys. Rev. E 74 036406
[26] Xu H, Azarm H, Bernhardt J, Kamali Y and Chin S L 2009 Chem. Phys. 360 171
[27] Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A and Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003
[28] Wang Q, Zhang Y, Wang Z, Ding J, Liu Z and Hu B 2016 Chin. Opt. Lett. 14 110201
[29] Lofthus A and Krupenie P H 1977 J. Phys. Chem. Ref. Data 6 113
[30] Langho S R and Bauschlicher C W Jr 1988 J. Chem. Phys. 88 329
[31] Luo Q, Liu W and Chin S L 2003 Appl. Phys. B 76 337
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[4] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[5] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[6] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[7] Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis
Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实). Chin. Phys. B, 2021, 30(12): 120702.
[8] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[9] Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells
Ming Lu(鲁明), Jing Xu(徐晶), Jian-Wei Huang(黄建微). Chin. Phys. B, 2016, 25(9): 098402.
[10] Fast-electron-impact study on excitations of 4d electron of xenon
Zhang Xin (张鑫), Liu Ya-Wei (刘亚伟), Peng Yi-Geng (彭裔耕), Xu Long-Quan (徐龙泉), Ni Dong-Dong (倪冬冬), Kang Xu (康旭), Wang Yang-Yang (王洋洋), Qi Yue-Ying (祁月盈), Zhu Lin-Fan (朱林繁). Chin. Phys. B, 2015, 24(12): 123401.
[11] A double toroidal analyzer for scanning probe electron energy spectrometer
Xu Chun-Kai (徐春凯), Zhang Pan-Ke (张盼科), Li Meng (郦盟), Chen Xiang-Jun (陈向军). Chin. Phys. B, 2014, 23(7): 073402.
[12] Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes
Liu Yan-Song(刘艳松), Yi Fu, Ramachandram Badugu, Joseph R. Lakowicz, and Xu Xiao-Liang(许小亮) . Chin. Phys. B, 2012, 21(3): 037803.
[13] Effects of electron radiation on shielded space and triple-junction GaAs solar cells
Gao Xin(高欣), Yang Sheng-Sheng(杨生胜), Xue Yu-Xiong(薛玉雄), Li Kai(李凯), Li Dan-Ming(李丹明), Wang Yi(王鹢), Wang Yun-Fei(王云飞), and Feng Zhan-Zu(冯展祖). Chin. Phys. B, 2009, 18(11): 5015-5019.
[14] Three-dimensional size and orientation of the precipitates in AZ91 magnesium alloys measured by TEM techniques
Zheng Ou(郑鸥), Ma Jia-Yan(马家艳), Wang Jian-Bo(王建波), Zhou Jia-Ping(周嘉萍), Jin Lei(金磊), Zhao Dong-Shan (赵东山), and Wang Ren-Hui(王仁卉). Chin. Phys. B, 2009, 18(10): 4370-4379.
[15] Energy loss of low energy ion N+q grazing on the Al(111) surface
Hu Bi-Tao(胡碧涛), Chen Chun-Hua(陈春花), Song Yu-Shou(宋玉收), and Gu Jian-Gang(顾建刚). Chin. Phys. B, 2007, 16(5): 1285-1289.
No Suggested Reading articles found!