PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas |
Rong-An Tang(唐荣安)†, Tiao-Fang Liu(刘调芳)‡, Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎) |
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract By one-dimensional particle-in-cell (PIC) simulations, the propagation and stability of relativistic electromagnetic (EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas. The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 1023 m-3 and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases (decreases) with the increase of the carrier wave frequency (vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude. This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.
|
Received: 01 June 2020
Revised: 31 July 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
52.35.Sb
|
(Solitons; BGK modes)
|
|
52.35.-g
|
(Waves, oscillations, and instabilities in plasmas and intense beams)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
52.38.-r
|
(Laser-plasma interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11765017, 11865014, 11847304, and 11764039), the Scientific Research Project of Gansu Higher Education, China (Grant No. 2019B-034), and the Science and Technology Project of Guizhou Province, China (Grant No. Qiankehe-LH-[2017]7008). |
Corresponding Authors:
†Corresponding author. E-mail: tangra79@163.com ‡Corresponding author. E-mail: LTF25975@163.com
|
Cite this article:
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎) Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas 2021 Chin. Phys. B 30 015201
|
1 Mori W B, Decker C D and Leemans W P 1993 IEEE Trans. Plasma Sci. 21 110 2 Esarey E, Ting A, Sprangle P, Umstadter D and Liu X 1993 IEEE Trans. Plasma Sci. 21 95 3 Kuo C C, Pai C H, Lin M W, Lee K H, Lin J Y, Wang J and Chen S Y 2007 Phys. Rev. Lett. 98 033901 4 Niknam A R, Aliakbari A, Majedi S, Haji Mirzaei F and Hashemzadeh M 2011 Phys. Plasmas 18 112305 5 Bokaei B, Niknam A R and Milani M R J 2014 Plasma Sources Sci. Technol. 23 064011 6 Hashemzadeh M 2018 Phys. Plasmas 25 012309 7 Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P and Mori W B 2018 Phys. Rev. Lett. 120 154801 8 Razavinia S N and Ghorbanalilu M 2019 Phys. Rev. Accel. Beams 22 111305 9 Sprangle P, Joyce G, Esarey E and Ting A1988 AIP Conf. Proc. 175 231 10 Tian J M, Tang R A, Hong X R, Yang Y, Wang L, Zhou W J and Xue J K 2016 Phys. Plasmas 23 123117 11 Zhang L, Tang R A, Hong X R, Gao J M, Yin L R, Tian J M, Cheng R J and Xue J K 2019 Phys. Plasmas 26 043106 12 Luo J, Chen M, Zeng M, Vieira J, Yu L, Weng S M, Silva L O, Jaroszynski D A, Sheng Z M and Zhang J 2016 Sci. Rep. 6 29101 13 Sprangle P, Esarey E and Ting A 1990 Phys. Rev. A 41 4463 14 Sharma A and Kourakis I 2010 Plasma Phys. Controlled Fusion 52 065002 15 Farina D and Bulanov S V 2001 Phys. Rev. Lett. 86 5289 17 Hong X R, Xie B S, Zhang S, Wu H C and Zhao X Y 2011 Phys. Plasmas 18 103106 18 Zhang S, Xie B S, Hong X R, Wu H C and Zhao X Y 2011 Phys. Plasmas 18 033104 19 Xie B S and Hua C C 2005 Commun. Theor. Phys. 43 1119 20 Sen A and Kaw P K 1994 Phys. Scripta T50 47 21 Weber S, Riconda C and Tikhonchuk V T 2005 Phys. Rev. Lett. 94 055005 22 Xiao C Z, Liu Z J, Wu D, Zheng C Y and He X T 2015 Phys. Plasmas 22 052121 23 Kaw P K, Sen A and Katsouleas T 1992 Phys. Rev. Lett. 68 3172 24 Liu S Q and Li X Q 2000 Phys. Plasmas 7 3405 25 Cheng L H, Tang R A, Zhang A X and Xue J K 2013 Phys. Rev. E 87 025101 26 Lehmann G, Laedke E W and Spatschek K H 2008 Phys. Plasmas 15 072307 27 Liu S Q, Tang W and Li X Q 2012 Pramana-J. Phys. 78 439 28 Esirkepov T, Nishihara K, Bulanov S V and Pegoraro F 2002 Phys. Rev. Lett. 89 275002 29 Bulanov S V, Esirkepov T Zh, Naumova N M, Pegoraro F and Vshivkov V A 1999 Phys. Rev. Lett. 82 3440 30 Borghesi M, Campbell D H, Schiavi A, Haines M G, Willi O, MacKinnon A J, Patel P, Gizzi L A, Galimberti M and Clarke R J 2002 Phys. Plasmas 9 2214 31 Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M and Pegoraro F 2002 Phys. Rev. Lett. 88 135002 32 Kartal S, Tsintsadze L N and Berezhiani V I 1996 Phys. Rev. E 53 4225 33 Mikaberidze G and Berezhiani V I 2015 Phys. Lett. A 379 2730 34 Poornakala S, Das A, Kaw P K, Sen A, Sheng Z M, Sentoku Y, Mima K and Nishikawa K 2002 Phys. Plasmas 9 3802 35 Lontano M, Passoni M and Bulanov S V 2003 Phys. Plasmas 10 639 36 Sànchez-Arriaga G, Siminos E and Lefebvre E 2011 Phys. Plasmas 18 082304 37 Verma D, Bera R K, Kumar A, Patel B and Das A 2017 Phys. Plasmas 24 123111 38 Sentoku Y, Esirkepov T Zh, Mima K, Nishihara K, Califano F, Pegoraro F, Sakagami H, Kitagawa Y, Naumova N M and Bulanov S V 1999 Phys. Rev. Lett. 83 3434 39 Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H and Sakharov A S 2001 Phys. Rev. Lett. 87 185004 40 Liu Y, Klimo O, Esirkepov T Zh, Bulanov S V, Gu Y J, Weber S and Korn G 2015 Phys. Plasmas 22 112302 41 Sànchez-Arriaga G and Lefebvre E 2011 Phys. Rev. E 84 036403 42 Esirkepov T, Bulanov S V, Nishihara K and Tajima T 2004 Phys. Rev. Lett. 92 255001 43 Li B, Ishiguro S, \vSkori\'c M M, Song M and Sato T 2005 Phys. Plasmas 12 103103 44 Li B, Ishiguro S, \vSkori\'c M M and Sato T 2007 Phys. Plasmas 14 032101 45 Xie J Y, Deng Z H, Chang X and Tang B 2019 Chin. Phys. B 28 77501 46 Ma Y R, Li L J and Duan W S 2019 Chin. Phys. B 28 25201 47 Bains A S, Misra A P, Saini N S and Gill T S 2010 Phys. Plasmas 17 012103 48 Marklund M, Eliasson B and Shukla P K 2006 Phys. Plasmas 13 083102 49 Shukla P K, Stenflo L and Fedele R 2003 Phys. Plasmas 10 310 50 Shatashvili N L, Javakhishvili J I and Kaya H 1997 Astrophys. Space Sci. 250 109 51 Zakharov V E and Ostrovsky L A 2009 Physica D 238 540 52 Meier J, Stegeman G I, Christodoulides D N, Silberberg Y, Morandotti R, Yang H, Salamo G, Sorel M and Aitchison J S 2004 Phys. Rev. Lett. 92 163902 53 Reece P J, Wright E M and Dholakia K 2007 Phys. Rev. Lett. 98 203902 54 Lontano M, Bulanov S V, Koga J, Passoni M and Tajima T 2002 Phys. Plasmas 9 2562 55 Eliasson B and Shukla P K 2006 Phys. Lett. A 354 453 56 Borhanian J 2012 Phys. Plasmas 19 082306 57 Cattaert T, Kourakis I and Shukla P K 2005 Phys. Plasmas 12 012319 58 Borhanian J, Kourakis I and Sobhanian S 2009 Phys. Lett. A 373 3667 59 Lee N C 2011 Phys. Plasmas 18 062310 60 Had\vzievski Lj, Jovanovi\'c M S, \vSkori\'c M M and Mima K 2002 Phys. Plasmas 9 2569 61 Lehmann G, Laedke E W and Spatschek K H 2006 Phys. Plasmas 13 092302 62 Saxena V, Das A, Sengupta S, Kaw P and Sen A 2007 Phys. Plasmas 14 072307 63 Saxena V, Das A, Sen A and Kaw P 2006 Phys. Plasmas 13 032309 64 Saxena V, Kourakis I, Sànchez-Arriaga G and Siminos E 2013 Phys. Lett. A 377 473 65 Rostampooran S and Aslaninejad M 2017 Phys. Plasmas 24 042302 66 Holkundkar A R and Brodin G 2018 Phys. Rev. E 97 043204 67 Sharma A, Malik H K, Kumar H and Goyal S2019 J. Appl. Phys. 13 31 68 Sharma A, Malik H K and Kumar H2018 J. Appl. Phys. 12 65 69 Hong X R, Zhou W J, Xie B S, Yang Y, Wang L, Tian J M, Tang R A and Duan W S 2017 Chin. Phys. B 26 065203 70 Wang H Y, Sun P, Jiang W, Zhou J and Xie B S 2014 Chin. Phys. B 24 065207 71 Weng S M, Murakami M, Mulser P and Sheng Z M 2012 New J. Phys. 14 063026 72 Dawson J M 1983 Rev. Mod. Phys 55 403 73 Pan K Q, Li S W, Guo L, Yang D, Li Z C, Zheng C Y, Jiang S E, Zhang B H and He X T 2018 Phys. Plasmas 25 052301 74 Wu D, Yu W, Fritzsche S, Zheng C Y and He X T 2019 Phys. Plasmas 26 063107 75 Hashemzadeh M and Niknam A R 2017 Phys. Plasmas 24 062102 76 Chen H Y, Liu S Q and Li X Q 2011 Opt. Int. J. Light Electron. Opt. 122 599 77 Borhanian J and Aghaei G H 2017 Phys. Plasmas 24 033116 78 Zheng X L, Weng S M, Zhang Z, Ma H H, Chen M, Mckenna P and Sheng Z M 2019 Opt. Express 28 15794 79 Zhao Y, Weng S M, Sheng Z M, Kang N, Liu H Y, Zhu J Q and Zhang J 2020 Opt. Express 27 19319 80 Farina D, Lontano M and Bulanov S 2000 Phys. Rev. E 62 4146 81 Tang R A, Hong X R, Gao J M and Xue J K 2016 Phys. Lett. A 380 1037 82 Tang R A, Cheng R J, Hong X R, Liu T F, Li X X, Gao J M, Guo P, Tian J M and Xue J K 2020 Phys. Lett. A 384 126267 83 Fedele R and Schamel H 2002 Eur. Phys. J. B 27 313 84 Shukla P K, Bharuthram R and Tsintsadze N L 1987 Phys. Rev. A 35 4889 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|