|
|
Fast-electron-impact study on excitations of 4d electron of xenon |
Zhang Xin (张鑫)a b, Liu Ya-Wei (刘亚伟)a b, Peng Yi-Geng (彭裔耕)a b, Xu Long-Quan (徐龙泉)a b, Ni Dong-Dong (倪冬冬)a b, Kang Xu (康旭)a b, Wang Yang-Yang (王洋洋)a b, Qi Yue-Ying (祁月盈)c, Zhu Lin-Fan (朱林繁)a b |
a Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; b Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; c School of Mathematics, Physics, and Information Engineering, Jiaxing University, Jiaxing 314001, China |
|
|
Abstract The electron energy loss spectrum of the 4d excitations of xenon was measured at an incident electron energy of 1500 eV and a scattering angle of 6°. Besides the optically allowed transitions of 4d5/2-1np and 4d3/2-1np', the optically forbidden transitions of 45/2-1ns, 4d5/2-1nd, 4d3/2-1ns', and 4d3/2-1nd' were observed. The measured features are assigned with the help of the calculation by the Cowan Code. The line profile parameters of both optically allowed transitions and optically forbidden ones were determined and compared with the previous available data. It is found that the natural widths of both dipole-allowed and dipole-forbidden excitations are approximately identical, which means the spectator transitions dominate the resonant Auger effect for both dipole-allowed and dipole-forbidden transitions.
|
Received: 26 June 2015
Revised: 26 August 2015
Accepted manuscript online:
|
PACS:
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
32.80.Aa
|
(Inner-shell excitation and ionization)
|
|
32.80.Hd
|
(Auger effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332204, 11274291, 11504361, and 11320101003). |
Corresponding Authors:
Zhu Lin-Fan
E-mail: lfzhu@ustc.edu.cn
|
Cite this article:
Zhang Xin (张鑫), Liu Ya-Wei (刘亚伟), Peng Yi-Geng (彭裔耕), Xu Long-Quan (徐龙泉), Ni Dong-Dong (倪冬冬), Kang Xu (康旭), Wang Yang-Yang (王洋洋), Qi Yue-Ying (祁月盈), Zhu Lin-Fan (朱林繁) Fast-electron-impact study on excitations of 4d electron of xenon 2015 Chin. Phys. B 24 123401
|
[1] |
Fano U 1961 Phys. Rev. 124 1866
|
[2] |
Tanner G, Richter K and Rost J M 2000 Rev. Mod. Phys. 72 497
|
[3] |
Eberhardt W, Kalkoffen G and Kunz C 1978 Phys. Rev. Lett. 41 156
|
[4] |
Ricz S, Koveŕ Á, Jurvansuu M, Varga D, Molnaŕ J and Aksela S 2002 Phys. Rev. A 65 042707
|
[5] |
Huttula S-M, Heinäsmäki S, Aksela H, Tulkki J, Kivimäki A, Jurvansuu M and Aksela S 2001 Phys. Rev. A 63 032703
|
[6] |
Domke M, Mandel T, Puschmann A, Xue C, Shirley D A, Kaindl G, Petersen H and Kuske P 1992 Rev. Sci. Instrum. 63 80
|
[7] |
Zangrando M, Zacchigna M, Finazzi M, Cocco D, Rochow R and Parmigiani F 2004 Rev. Sci. Instrum. 75 31
|
[8] |
Quaresima C, Ottaviani C, Matteucci M, Crotti C, Antonini A, Capozi M, Rinaldi S, Luce M, Perfetti P, Prince K C, Astaldi C, Zacchigna M, Romanzin L and Savoia A 1995 Nucl. Instrum. Methods Phys. Res. A 364 374
|
[9] |
King G C, Tronc M, Read F H and Bradford R C 1977 J. Phys. B: At. Mol. Phys. 10 2479
|
[10] |
Hitchcock A P and Brion C E 1978 J. Electron Spectrosc. Relat. Phenom. 14 417
|
[11] |
Shaw D A, King G C, Read F H and Cvejanović D 1982 J. Phys. B: At. Mol. Phys. 15 1785
|
[12] |
Codling K and Madden R P 1972 J. Res. Natl. Bur. Stand., Sec. A 76 1
|
[13] |
Codling K and Madden R P 1964 Phys. Rev. Lett. 12 106
|
[14] |
Codling K and Madden R P 1971 Phys. Rev. A 4 2261
|
[15] |
Madden R P, Ederer D L and Codling K 1969 Phys. Rev. 177 136
|
[16] |
Codling K, Madden R P and Ederer D L 1967 Phys. Rev. A 155 26
|
[17] |
Nakamura M, Sasanuma M, Sato S, Watanabe M, Yamashita H, Iguchi Y, Ejiri A, Nakai S, Yamaguchi S, Sagawa T, Nakai Y and Oshio T 1968 Phys. Rev. Lett. 21 1303
|
[18] |
Ederer D L and Manalis M 1975 J. Opt. Soc. Am. 65 634
|
[19] |
Sairanen O P, Kivimäki A, Nõmmiste E, Aksela H and Aksela S 1996 Phys. Rev. A 54 2834
|
[20] |
Jurvansuu M, Kivimäki A and Aksela S 2001 Phys. Rev. A 64 012502
|
[21] |
Masui S, Shigemasa E, Yagishita A and Sellin I A 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4529
|
[22] |
Prince K C, Vondráček M, Karvonen J, Coreno M, Camilloni R, Avaldi L and de Simone M 1999 J. Electron Spectrosc. Relat. Phenom. 101 141
|
[23] |
Zhu L F, Cheng H D, Liu X J, Tian P, Yuan Z S, Li W B and Xu K Z 2003 Chin. Phys. Lett. 20 1718
|
[24] |
Yuan Z S, Sakai Y, Umeda N, Fujita Y, Takayanagi T, Yamada C, Nakamura N, Ohtani S, Zhu L F and Xu K Z 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5097
|
[25] |
Jiang W C, Zhu L F and Xu K Z 2008 Chin. Phys. Lett. 25 3649
|
[26] |
Ge M, Zhu L F, Liu C D and Xu K Z 2008 Chin. Phys. Lett. 25 3646
|
[27] |
Ren L M, Wang Y Y, Li D D, Yuan Z S and Zhu L F 2011 Chin. Phys. Lett. 28 053401
|
[28] |
Boechat-Roberty H M, Freitas J D, Almeida D P and de Souza G G B 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1409
|
[29] |
Wu S L, Zhong Z P, Feng R F, Xing S L, Yang B X and Xu K Z 1995 Phys. Rev. A 51 4494
|
[30] |
Liu X J, Zhu L F, Jiang X M, Yuan Z S, Cai B, Chen X J and Xu K Z 2001 Rev. Sci. Instrum. 72 3357
|
[31] |
Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press)
|
[32] |
Clark R E H, Abdallah J, Csanak G and Kramer S P 1989 Phys. Rev. A 40 2935
|
[33] |
Clark R E H, Csanak G and Abdallah J 1991 Phys. Rev. A 44 2874
|
[34] |
Cheng H D, Zhu L F, Yuan Z S, Liu X J, Sun J M, Jiang W C and Xu K Z 2005 Phys. Rev. A 72 012715
|
[35] |
Armen G B, Aksela H, Åberg T and Aksela S 2000 J. Phys. B: At. Mol. Opt. Phys. 33 R49
|
[36] |
Yuan Z S, Zhu L F, Liu X J, Li W B, Cheng H D, Sun J M and Xu K Z 2005 Phys. Rev. A 71 064701
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|