Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128702    DOI: 10.1088/1674-1056/abb7f9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection

Zhiwei He(何志威)1, Chenggui Yao(姚成贵)2,†, Jianwei Shuai(帅建伟)3,‡, and Tadashi Nakano4
1 Department of Mathematics, Shaoxing University, Shaoxing 312000, China; 2 College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314000, China; 3 Department of Physics, State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China; 4 Graduate School of Frontier Biosciences, Osaka University, 5408570, Japan
Abstract  Many animals can detect the multi-frequency signals from their external surroundings. The understanding for underlying mechanism of signal detection can apply the theory of vibrational resonance, in which the moderate high frequency driving can maximize the nonlinear system's response to the low frequency subthreshold signal. In this work, we study the roles of chemical autapse on the vibrational resonance in a single neuron for signal detection. We reveal that the vibrational resonance is strengthened significantly by the inhibitory autapse in the neuron, while it is weakened typically by the excitatory autapse. It is generally believed that the inhibitory synapse has a suppressive effect in neuronal dynamics. However, we find that the detection of the neuron to the low frequency subthreshold signal can be improved greatly by the inhibitory autapse. Our finding indicates that the inhibitory synapse may act constructively on the detection of weak signal in the brain and neuronal system.
Keywords:  neuronal dynamics      autapse      vibrational resonance      synchronization      time delay  
Received:  16 July 2020      Revised:  09 August 2020      Accepted manuscript online:  14 September 2020
PACS:  87.19.lj (Neuronal network dynamics)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lm (Synchronization in the nervous system)  
Fund: Project supported partially by the National Natural Science Foundation of China (Grant Nos. 11675112, 11705116, 11675134, and 11874310) and the National Natural Science Foundation of China for the 111 Project (Grant No. B16029).
Corresponding Authors:  Corresponding author. E-mail: yaochenggui2006@126.com Corresponding author. E-mail: jianweishuai@xmu.edu.cn   

Cite this article: 

Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection 2020 Chin. Phys. B 29 128702

[1] Victor J D and Conte M M Vis. Neurosci. 17 959 DOI: 10.1017/S09525238001761512000
[3] Gherm V, Zernov N, Lundborg B and Vastberg A J. Atmos. Sol. Terr. Phys. 59 1831 DOI: 10.1016/S1364-6826(97)00011-41997
[4] Heiligenberg W1991 Neural Nets in Electric Fish (Cambridge: MIT Press)
[5] Middleton J, Longtin A J B and Maler L Proc. Natl. Acad. Sci. USA 103 14596 DOI: 10.1073/pnas.06041031032006
[6] Stamper S A, Fortune E S and Chacron M J J. Exp. Biol. 216 2393 DOI: 10.1242/jeb.0823212013
[7] Wang G Y and Chen D J IEEE Trans. Ind. Electron. 46 440 DOI: 10.1109/41.7537831999
[8] Modestino J W and Ningo A Y Trans. Inform. Theory. 25 592 DOI: 10.1109/TIT.1979.10560861979
[9] Wiesenfeld K and Moss F Nature 373 33 DOI: 10.1038/373033a01995
[10] Gammaitoni L, Hanggi P, Jung P and Marchesoni F Rev. Mod. Phys. 70 223 DOI: 10.1103/RevModPhys.70.2231998
[11] Landa P S and McClintock P V E J. Phys. A: Math. Gen. 33 L433 DOI: 10.1088/0305-4470/33/45/1032000
[12] Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuán M A F Phys. Rev. E 67 066119 DOI: 10.1103/PhysRevE.67.0661192003
[13] Blekhman I I and Landa P S Int. J. Non-Linear Mech. 39 421 DOI: 10.1016/S0020-7462(02)00201-92004
[14] Ullner E, Zaikin A, Garcíía-Ojalvo J, Bascones R and Kurths J Phys. Lett. A 312 348 DOI: 10.1016/S0375-9601(03)00681-92003
[15] Casado-Pascual J and Baltanás J P Phys. Rev. E 69 046108 DOI: 10.1103/PhysRevE.69.0461082004
[16] Yao C G Liu Y and Zhan M Phys. Rev. E 83 061122 DOI: 10.1103/PhysRevE.83.0611222011
[17] Yao C G and Zhan M Phys. Rev. E 81 061129 DOI: 10.1103/PhysRevE.81.0611292010
[18] Chizhevsky V N, Smeu E and Giacomelli G Phys. Rev. Lett. 91 220602 DOI: 10.1103/PhysRevLett.91.2206022003
[19] Wu X X, Yao C G and Shuai J W Sci. Rep. 5 7684 DOI: 10.1038/srep076842015
[20] Yang L J, Liu W H, Yi M, Wang C J, Zhu Q M, Zhan X and Jia Y Phys. Rev. E 86 016209 DOI: 10.1103/PhysRevE.86.0162092012
[21] Kaplan D T, Clay J R, Manning T, Glass L, Guevara M R and Shrier A Phys. Rev. Lett. 76 4074 DOI: 10.1103/PhysRevLett.76.40741996
[22] He Z W and Yao C G Sci. China Tech. Sc. 63 2339 DOI: 10.1007/s11431-020-1659-y2020
[23] Yao C G, He Z W, Luo J M and Shuai J W Phys. Rev. E 91 052901 DOI: 10.1103/PhysRevE.91.0529012015
[24] Wang L, Zhang P M, Liang P J, Pei J and Qiu Y H Chin. Phys. Lett. 31 070501 DOI: 10.1088/0256-307X/31/7/0705012014
[25] Ozer M, Uzuntarla M, Kayikcioglu T and Graham L J. Phys. Lett. A 373 964 DOI: 10.1016/j.physleta.2009.01.0342008
[26] Liang L S, Zhang J Q and Liu L Z Chin. Phys. Lett. 31 050502 DOI: 10.1088/0256-307X/31/5/0505022014
[27] Yu Y G, Wang W, Wang J F and Liu F Phys. Rev. E 63 021907 DOI: 10.1103/PhysRevE.63.0219072001
[28] Zhang X, Huang H B, Li P J, Wu F P, Wu W J and Jiang M Chin. Phys. Lett. 29 120501 DOI: 10.1088/0256-307X/29/12/1205012012
[29] Cao B, Guan L N and Gu H G Acta Phys. Sin. 67 240502 (in Chinese) DOI: 10.7498/aps.67.201816752018
[30] Van Der Loos H and Glaser E M Brain Res. 48 355 DOI: 10.1016/0006-8993(72)90189-81972
[31] Bekkers J M Curr. Biol. 8 R52 DOI: 10.1016/S0960-9822(98)70033-81998
[32] Flight M H Nat. Rev. Neurosci. 10 316 DOI: 10.1038/nrn26372009
[33] Bekkers J M Curr. Biol. 13 R433 DOI: 10.1016/S0960-9822(03)00363-42003
[34] Bacci A and Huguenard J R Neuron 49 119 DOI: 10.1016/j.neuron.2005.12.0142006
[35] Bacci A, Huguenard J R and Prince D A J. Neurosci. 23 859 DOI: 10.1523/JNEUROSCI.23-03-00859.20032003
[36] Yi M and Yao C G Complexity 2020 1292417 DOI: 2020
[37] Qin H X, Ma J, Wang C N and Wu Y PLoS One 9 e100849 DOI: 10.1371/journal.pone.01008492014
[38] Wei C L and Zhao X Chin. Phys. B 28 013201 DOI: 10.1088/1674-1056/28/1/0132012019
[39] Usha K and Subha P A Chin. Phys. B 28 020502 DOI: 10.1088/1674-1056/28/2/0205022019
[40] Li D X, Bing J and Ye L Y 2019 Acta Phys. Sin. 68 180502 (in Chinese) DOI: 10.7498/aps.68.20190197
[41] Li Y, Schmid G and Haggi P Phys. Rev. E 82 061907 DOI: 10.1103/PhysRevE.82.0619072010
[42] Chen J X, Zhang H, Qiao Li Y, Liang H and Sun W G Commun. Nonlinear Sci. Numer. Simulat. 54 202 DOI: 10.1016/j.cnsns.2017.05.0342018
[43] Yu H T, Cai L H, Wu X Y, Wang J, Liu J and Zhang H Chin. Phys. B 28 048702 DOI: 10.1088/1674-1056/28/4/0487022019
[44] Yao C G, He Z W, Nakano T and Shuai J W Chaos 28 083112 DOI: 10.1063/1.50187072018
[45] Song X L, Wang H T and Chen Y Nonlinear Dyn. 96 2341 DOI: 10.1007/s11071-019-04925-72019
[46] Chen J X, Xiao J, Qian L Y and Xu J R Nonlinear Sci. Numer. Simul. 59 331 DOI: 10.1016/j.cnsns.2017.11.0142018
[47] Ma J and Tang J Sci. China Tech. Sc. 62 2038 DOI: 10.1007/s11431-019-9551-42019
[48] Lv M, Ma J, Yao Y G and Alzahrani F2015 Sci. China Tech. Sc. 58 448
[49] Yao C G He Z W and Nakano T Nonlinear Dyn. 97 1425 DOI: 10.1007/s11071-019-05060-z2019
[50] Qian N Proc. Natl. Acad. Sci. USA 87 8145 DOI: 10.1073/pnas.87.20.81451990
[51] Eccles J C Annu. Rev. Neurosci. 5 325 DOI: 10.1146/annurev.ne.05.030182.0015451982
[52] Hodgkin A L and Huxley A F J. Physiol. 117 500 DOI: 10.1113/jphysiol.1952.sp0047641952
[53] Burić N, Todorović K and Vasović N Phy. Rev. E 78 036211 DOI: 10.1103/PhysRevE.78.0362112008
[54] Belykh I, Lange E and Hasler M Phy. Rev. Lett. 94 188101 DOI: 10.1103/PhysRevLett.94.1881012005
[55] Schutter E D1988 Computational Modeling Methods for Neuroscientists (Cambridge: MIT Press)
[56] Wang S T, Wang W and Liu F Phys. Rev. Lett. 96 018103 DOI: 10.1103/PhysRevLett.96.0181032006
[57] Connelly W M and Lees G J. Physiol. 588 2047 DOI: 10.1113/tjp.2010.588.issue-122010
[58] Ozera M, Perc M, Uzuntarla M and Koklukayab E NeuroReport 21 338 DOI: 10.1097/WNR.0b013e328336ee622010
[59] Lübke J, Markram H, Frotscher M and Sakmann B J. Neurosci. 16 3209 DOI: 10.1523/JNEUROSCI.16-10-03209.19961996
[60] Wang C N, Guo S L, Xu Y, Ma J, Tang J Alzahrani F and Aatef H 2017 Complexity 2017 5436737 DOI: 10.1155/2017/5436737
[61] Xu Y, Ying H P, Jia Y, Ma J and Hayat T Sci. Rep. 7 43452 DOI: 10.1038/srep434522017
[1] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[2] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[3] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[4] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[5] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[6] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[7] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[8] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[9] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[10] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[11] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[12] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[13] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[14] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[15] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
No Suggested Reading articles found!