Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114205    DOI: 10.1088/1674-1056/abb663
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Actively tunable polarization-sensitive multiband absorber based on graphene

Ai-Li Cao(曹爱利), Kun Zhang(张昆), Jia-Rui Zhang(张佳瑞), Yan Liu(刘燕), and Wei-Jin Kong(孔伟金)
College of Physics Science, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
Abstract  

We design an actively tunable polarization-sensitive multiband absorber in the mid-infrared region, which consists of stacked graphene multilayers separated by dielectric layers on a metal mirror. Benefiting from the anisotropic structure, the absorber has dual absorption bands with almost perfect absorption at different wavelengths under the x and y polarizations. Analyzing the electric field amplitude distributions and the surface currents, we find that the absorption peaks under the same polarization are excited in the graphene layers independently. Therefore, more absorption bands can be achieved by increasing the graphene layers. Adjusting the Fermi energy of the graphene layers, the working wavelengths of the polarization-sensitive multiband absorbers can be tuned actively, and thus achieving a wide band regulation range. Besides, the peak number and the peak strength of the multiband absorber can be actively controlled by the polarization angle as well. We also propose a method to design an actively tunable polarization-sensitive multiband absorber, which may have potential applications in mid-infrared devices, such as polarization-sensitive filters and detectors.

Keywords:  multiband absorber      polarization-sensitive      graphene      band regulation  
Received:  03 July 2020      Revised:  12 August 2020      Accepted manuscript online:  09 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11804178 and 11274188) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BA027).
Corresponding Authors:  Corresponding author. E-mail: zkun@qdu.edu.cn Corresponding author. E-mail: kwjsd@163.com   

Cite this article: 

Ai-Li Cao(曹爱利), Kun Zhang(张昆), Jia-Rui Zhang(张佳瑞), Yan Liu(刘燕), and Wei-Jin Kong(孔伟金) Actively tunable polarization-sensitive multiband absorber based on graphene 2020 Chin. Phys. B 29 114205

Fig. 1.  

(a) Schematic diagram of graphene-based absorber. Top view of (b) top and (c) bottom graphene patches.

Fig. 2.  

Absorption spectra under (a) x- and (b) y-polarized incident light with black solid line, red dashed line, and blue dashed line denoting structures including dual-layer graphene patches, top graphene patch, and bottom graphene patch, respectively.

Fig. 3.  

Absorption spectra for different values of EF under (a) x polarization and (b) y polarization, respectively, relationship between the maximum absorption intensity and EF under (c) x polarization and (d) y polarization, and [(e) and (f)] absorption spectra for changing EF of each graphene layer individually under x and y polarizations.

Fig. 4.  

(a) Absorption spectra under different polarization angles, and (b) maximum absorptions of peaks related to different polarization angles.

Fig. 5.  

Electric field amplitude and surface current distribution under x polarization, relating to [(a) and (c)] P1 and [(b) and (d)] P2. Panels (a) and (b) show electric field around the top and bottom graphene patches in xy plane, while panels (c) and (d) display those in xz plane, respectively. Black dashed lines indicate the place of graphene structures.

Fig. 6.  

Electric field amplitude and surface current distributions under y polarization at [(a) and (c)] P3, [(b) and (d)] P4. Panels (a) and (b) show electric field around the top and bottom graphene patches in xy plane, while panels (c) and (d) display those in yz plane, respectively.

Fig. 7.  

(a) Absorption spectra for different values of d1, (b) related electric field distributions under x polarization, (c) absorption spectra for different values of d1, and (d) related electric field distributions under y polarization.

Fig. 8.  

Variations of absorption spectrum with (a) l1, (b) w1, (c) D1, (d) l2, (e) w2, and (f) D2, respectively.

[1]
Shelby R A, Smith D R, Schultz S 2001 Science 292 77 DOI: 10.1126/science.1058847
[2]
Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23 DOI: 10.1038/nnano.2015.304
[3]
Smith D R, Schultz S, Markos P, Soukoulis C M 2001 Phys. Rev. B 65 195104 DOI: 10.1103/PhysRevB.65.195104
[4]
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977 DOI: 10.1126/science.1133628
[5]
Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98 DOI: 10.1002/adma.201200674
[6]
Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403 DOI: 10.1103/PhysRevLett.104.207403
[7]
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402 DOI: 10.1103/PhysRevLett.100.207402
[8]
Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342 DOI: 10.1021/nl9041033
[9]
Katrodiya D, Jani C, Sorathiya V, Patel S K 2019 Opt. Mater. 89 34 DOI: 10.1016/j.optmat.2018.12.057
[10]
Wu C H, Neuner B, Shvets G, John J, Milder A, Zollars B, Savoy S 2011 Phys. Rev. B 84 075102 DOI: 10.1103/PhysRevB.84.075102
[11]
Chen H T 2012 Opt. Express 20 7165 DOI: 10.1364/OE.20.007165
[12]
Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102 DOI: 10.1063/1.4890521
[13]
Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192 DOI: 10.1038/nature11458
[14]
Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 DOI: 10.1038/nmat1849
[15]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 DOI: 10.1073/pnas.0502848102
[16]
Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 161407 DOI: 10.1103/PhysRevB.84.161407
[17]
Sun P, You C L, Mahigir A, Liu T T, Xia F, Kong W J, Veronis G, Dowling J P, Dong L F, Yun M J 2018 Nanoscale 10 15564 DOI: 10.1039/C8NR02525H
[18]
Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299 DOI: 10.1021/nl404042h
[19]
Huang M L, Cheng Y Z, Cheng Z Z, Chen H R, Mao X S, Gong R Z 2018 Opt. Commun. 415 194 DOI: 10.1016/j.optcom.2018.01.051
[20]
Ke S L, Wang B, Huang H, Long H, Wang K, Lu P X 2015 Opt. Express 23 8888 DOI: 10.1364/OE.23.008888
[21]
Bao Z Y, Wang J C, Hu Z D, Balmakou A, Khakhomov S, Tang Y, Zhang C L 2019 Opt. Express 27 31435 DOI: 10.1364/OE.27.031435
[22]
Hu J, Liu W, Xie W, Zhang W, Yao E, Zhang Y, Zhan Q 2019 Opt. Lett. 44 5642 DOI: 10.1364/OL.44.005642
[23]
Yao G, Ling F, Yue J, Luo C, Ji J, Yao J 2016 Opt. Express 24 1518 DOI: 10.1364/OE.24.001518
[24]
Hu J, Yao E, Xie W, Liu W, Zhan Q 2019 Opt. Express 27 18642 DOI: 10.1364/OE.27.018642
[25]
Fan C, Tian Y, Ren P, Jia W 2019 Chin. Phys. B 28 076105 DOI: 10.1088/1674-1056/28/7/076105
[26]
Wang J, Gao C N, Jiang Y N, Akwuruoha C N 2017 Chin. Phys. B 26 114102 DOI: 10.1088/1674-1056/26/11/114102
[27]
Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Express 25 23873 DOI: 10.1364/OE.25.023873
[28]
Xia Y Y, Dai Y, Wang B, Chen A, Zhang Y B, Zhang Y W, Guan F, Liu X H, Shi L, Zi J 2019 Opt. Express 27 1080 DOI: 10.1364/OE.27.001080
[29]
Cai Y J, Xu K D 2018 Opt. Express 26 31693 DOI: 10.1364/OE.26.031693
[30]
Zhang J F, Zhu Z H, Liu W, Yuan X D, Qin S Q 2015 Nanoscale 7 13530 DOI: 10.1039/C5NR03060A
[31]
Piper J R, Fan S H 2014 ACS Photon. 1 347 DOI: 10.1021/ph400090p
[32]
Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411 DOI: 10.1038/nphoton.2011.102
[33]
Hanson G W 2008 J. Appl. Phys. 103 064302 DOI: 10.1063/1.2891452
[34]
Li K, Xia F, Wang M, Sun P, Liu T, Hu W P, Kong W J, Yun M J, Dong L F 2017 Carbon 118 192 DOI: 10.1016/j.carbon.2017.03.047
[35]
Hanson G W 2008 J. Appl. Phys. 104 084314 DOI: 10.1063/1.3005881
[36]
Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370 DOI: 10.1021/nl201771h
[37]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666 DOI: 10.1126/science.1102896
[38]
Gómez-Díaz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490 DOI: 10.1364/OE.21.015490
[1] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[4] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[14] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[15] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
No Suggested Reading articles found!