Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110304    DOI: 10.1088/1674-1056/abaedd
GENERAL Prev   Next  

New semi-quantum key agreement protocol based on high-dimensional single-particle states

Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润)
Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China

A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states. Different from the previous semi-quantum key agreement protocols based on the two-level quantum system, the propounded protocol makes use of the advantage of the high-dimensional quantum system, which possesses higher efficiency and better robustness against eavesdropping. Besides, the protocol allows the classical participant to encode the secret key with qudit shifting operations without involving any quantum measurement abilities. The designed semi-quantum key agreement protocol could resist both participant attacks and outsider attacks. Meanwhile, the conjoint analysis of security and efficiency provides an appropriate choice for reference on the dimension of single-particle states and the number of decoy states.

Keywords:  semi-quantum key agreement protocol      high-dimensional quantum state      quantum cryptography      quantum communication  
Received:  14 July 2020      Revised:  05 August 2020      Accepted manuscript online:  13 August 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033) and the Major Academic Discipline and Technical Leader of Jiangxi Province, China (Grant No. 20162BCB22011).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润) New semi-quantum key agreement protocol based on high-dimensional single-particle states 2020 Chin. Phys. B 29 110304

Measurement result Encoding result
|0〉 0
|1〉 1
|d – 1〉 d – 1
Table 1.  

Encoding rule.

Fig. 1.  

Probability of detected eavesdropping.

Fig. 2.  

Relationship between efficiency and dimension.

QR QC QPNQO CPNO Efficiency/%
Ref. [3] single photon 1 SPUO+SPM None 16.67
Ref. [28] Bell state 2 SPUO+BM CBM+PO+RO+PP 9.09
Ref. [29] Bell state 4 SPM+BM CBM+PO+RO 6.7
Ref. [30] cluster state 4 SPM+BM+FPOM CBM+RO+PP 2.08
Ours single photon 3 SPM QSO+PO+RO $\displaystyle \frac{100{\mathrm{log}}_{2}d}{4+{\mathrm{log}}_{2}d}$
Table 2.  

Comparisons of some typical protocols and our protocol.

Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing December 10–12, 1984 Bangalore, India 175
Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149 DOI: 10.1049/el:20045183
Chong S K, Hwang T 2010 Opt. Commun. 283 11923 DOI: 10.1016/j.optcom.2009.11.007
Chong S K, Tsai C W, Hwang T 2011 Int. J. Theor. Phys. 50 1793 DOI: 10.1007/s10773-011-0691-4
Shi R H, Zhong H 2013 Quantum Inf. Process. 12 921 DOI: 10.1007/s11128-012-0443-2
Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797 DOI: 10.1007/s11128-012-0492-6
Sun Z, Zhang C, Wang B, Li Q, Long D 2013 Quantum Inf. Process. 12 3411 DOI: 10.1007/s11128-013-0608-7
Shukla C, Alam N, Pathak A 2014 Quantum Inf. Process. 13 2391 DOI: 10.1007/s11128-014-0784-0
Huang W, Wen Q Y, Liu B, Gao F, Sun Y 2014 Quantum Inf. Process. 12 649 DOI: 10.1007/s11128-013-0680-z
Xu G B, Wen Q Y, Gao F, Qin S J 2014 Quantum Inf. Process. 13 2587 DOI: 10.1007/s11128-014-0816-9
He Y F, Ma W P 2016 Quantum Inf. Process. 14 1650007 DOI: 10.1142/S0219749916500076
Shen D S, Ma W P, Wang L L 2014 Quantum Inf. Process. 13 2313 DOI: 10.1007/s11128-014-0785-z
Yang Y G, Li B R, Kang S Y, Chen X B, Zhou Y H, Shi W M 2019 Quantum Inf. Process. 18 77 DOI: 10.1007/s11128-019-2200-2
Liu H N, Liang X Q, Jiang D H, Xu G B, Zheng W M 2013 Quantum Inf. Process. 18 242 DOI: 10.1007/s11128-019-2346-y
Cai T, Jiang M, Cao G 2018 Quantum Inf. Process. 17 103 DOI: 10.1007/s11128-018-1871-4
Liu B, Xiao D, Jia H Y, Liu R Z 2016 Quantum Inf. Process. 15 2113 DOI: 10.1007/s11128-016-1264-5
Wang P, Sun Z W, Sun X Q 2017 Quantum Inf. Process. 16 170 DOI: 10.1007/s11128-017-1621-z
Boyer M, Kenigsberg D, Mor T 2007 Phys. Rev. Lett. 99 140501 DOI: 10.1103/PhysRevLett.99.140501
Guo Y, Su Y, Zhou J, Zhang L, Huang D 2019 Chin. Phys. B 28 010305 DOI: 10.1088/1674-1056/28/1/010305
Zhou N R, Zhu K N, Zou X F 2019 Ann. Phys. 531 1800520 DOI: 10.1002/andp.201800520
He R S, Jiang M S, Wang Y, Gan Y H, Zhou C, Bao W S 2019 Chin. Phys. B 28 040303 DOI: 10.1088/1674-1056/28/4/040303
Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303 in Chinese DOI: 10.7498/aps.66.230303
Luo Y P, Hwang T 2018 Quantum Inf. Process. 15 947 DOI: 10.1007/s11128-015-1182-y
Xiang Y, Liu J, Bai M Q, Yang X, Mo Z W 2019 Int. J. Theor. Phys. 58 2883 DOI: 10.1007/s10773-019-04171-y
Zhou N R, Zhu K N, Bi W, Gong L H 2019 Quantum Inf. Process. 18 197 DOI: 10.1007/s11128-019-2308-4
Jiang L Z 2020 Quantum Inf. Process. 19 180 DOI: 10.1007/s11128-020-02674-w
Liu W J, Chen Z Y, Ji S, Wang H B, Zhang J 2017 Int. J. Theor. Phys. 56 3164 DOI: 10.1007/s10773-017-3484-6
Shukla C, Thapliyal K, Pathak A 2017 Quantum Inf. Process. 16 295 DOI: 10.1007/s11128-017-1736-2
Yan L L, Zhang S B, Chang Y, Sheng Z W, Sun Y H 2019 Quantum Inf. Process. 58 3852 DOI: 10.1007/s10773-019-04252-y
Zhou N R, Zhu K N, Wang Y Q 2020 Int. J. Theor. Phys. 59 663 DOI: 10.1007/s10773-019-04288-0
Shi Z, Mirhosseini M, Margiewicz J, Malik M, Rivera F, Zhu Z, Boyd R W 2013 Optica 12 3411 DOI: 10.1364/OPTICA.2.000388
Molina-Terriza G, Vaziri A, Rehacek J, Hradil Z, Zeilinger A 2004 Phys. Rev. A 92 167903 DOI: 10.1103/PhysRevLett.92.167903
Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lutkenhaus N, Forbes A 2013 Phys. Rev. A 88 032305 DOI: 10.1103/PhysRevA.88.032305
De Oliveira M, Nape I, Pinnell J, TabeBordbar N, Forbes A 2020 Phys. Rev. A 101 042303 DOI: 10.1103/PhysRevA.101.042303
Nunn J, Wright L J, Soller C, Zhang L, Walmsley I A, Smith B J 2013 Opt. Express 21 15959 DOI: 10.1364/OE.21.015959
Tang G Z, Sun S H, Chen H, Li C Y, Liang L M 2016 Chin. Phys. Lett. 33 120301 DOI: 10.1088/0256-307X/33/12/120301
Niu M Y, Xu F, Shapiro J H, Furrer F 2016 Phys. Rev. A 94 052323 DOI: 10.1103/PhysRevA.94.052323
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Willner A E 2012 Nat. Photon. 6 488 DOI: 10.1038/NPHOTON.2012.138
Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305 DOI: 10.1103/PhysRevA.71.044305
Bradler K, Mirhosseini M, Fickler R, Broadbent A, Boyd R 2016 New J. Phys. 18 073030 DOI: 10.1088/1367-2630/18/7/073030
Yan X Y, Zhou N R, Gong L H, Wang Y Q, Wen X J 2013 Quantum Inf. Process. 18 271 DOI: 10.1007/s11128-019-2368-5
Ye C Q, Ye T Y 2019 Int. J. Theor. Phys. 58 1282 DOI: 10.1007/s10773-019-04019-5
Nie Y Y, Li Y H, Wang Z S 2013 Quantum Inf. Process. 12 437 DOI: 10.1007/s11128-012-0388-5
Cai Q Y 2006 Phys. Lett. A 351 23 DOI: 10.1016/j.physleta.2005.10.050
Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302 DOI: 10.1103/PhysRevA.74.054302
Yang Y G, Sun S J, Zhao Q Q 2015 Quantum Inf. Process. 14 681 DOI: 10.1007/s11128-014-0872-1
Cabello A 2000 Phys. Rev. Lett. 85 5635 DOI: 10.1103/PhysRevLett.85.5635
[1] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[2] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[3] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[4] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[5] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[6] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[7] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[8] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[9] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[10] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[11] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[12] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
[13] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[14] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[15] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
No Suggested Reading articles found!