Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 105101    DOI: 10.1088/1674-1056/aba274
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Plasma simulation to analyze velocity distribution characteristics of pseudospark-sourced electron beam

Hai-Long Li(李海龙)1,†, Chen-Fei Hu(胡陈飞)1, Che Xu(徐彻)1, Yong Yin(殷勇)1, Bin Wang(王彬)1, Lin Meng(蒙林)1, and Mao-Yan Wang(王茂琰)2
1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
2 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  

Pseudospark-sourced electron beam is a promising candidate for driving vacuum electronic devices to generate millimeter wave and terahertz wave radiation as it has a very high combined beam current density. However, the inherent velocity spread of the beam, which is difficult to measure in experiment, has a great influence on the operating frequency and efficiency of the vacuum electronic device. In this paper, the velocity distribution characteristics of the electron beam produced by a single-gap hollow cathode electron gun are numerically studied and a three-dimensional kinetic plasma simulation model of a single-gap hollow cathode electron gun is built by using particle in cell and Monte Carlo collision methods in Vorpal. Based on the simulation model, the time-dependent evolution of the plasma formation inside the hollow cathode and electron beam generation process are observed. It is demonstrated that the pseudospark-sourced electron beam has a relatively large velocity spread. The time-dependent velocity distribution of the beam is analyzed, and the dependence of the beam velocity distribution under various operating conditions such as anode–cathode potential difference, gas pressure, and cathode aperture size are also studied.

Keywords:  pseudospark      hollow cathode      vacuum electronic devices      discharge  
Received:  25 February 2020      Revised:  26 June 2020      Accepted manuscript online:  03 July 2020
PACS:  51.50.+v (Electrical properties)  
  29.25.-t (Particle sources and targets)  
  29.25.Bx (Electron sources)  
Corresponding Authors:  Corresponding author. E-mail: hailong703@163.com   
About author: 
†Corresponding author. E-mail: hailong703@163.com
* Project supported by the Sichuan Science and Technology Program, China (Grant No. 2019YJ0188) and the National Natural Science Foundation of China (Grant Nos. 61671116 and 11905026).

Cite this article: 

Hai-Long Li(李海龙)†, Chen-Fei Hu(胡陈飞), Che Xu(徐彻), Yong Yin(殷勇), Bin Wang(王彬), Lin Meng(蒙林), and Mao-Yan Wang(王茂琰) Plasma simulation to analyze velocity distribution characteristics of pseudospark-sourced electron beam 2020 Chin. Phys. B 29 105101

Fig. 1.  

2D schematic view of simulated structure.

Collision elastic collisions between electrons and argon atoms
excitation collisions between electrons and argon atoms
ionization collisions between electrons and argon atoms
Boundary electrons and argon ions absorbed by metal boundary
secondary electrons from argon ions impacting on the metal surfaces
Table 1.  

Physical processes in simulation.

Fig. 2.  

At cathode voltage −10 kV and gas pressure 30 Pa: (a) potential distribution at 11 ns, (b) seed electrons (green) and new electrons (blue) distribution at 11 ns, (c) potential distribution at 15 ns, and (d) seed electrons (green) and new electrons (blue) distribution at 15 ns.

Fig. 3.  

Time-dependent properties of PS-sourced electron beam, showing (a) waveform of discharge current and beam current, (b) time-dependent axial mean velocity of electrons, (c) time-dependent radial mean velocity of electrons, and (d) electron beam velocity distributions at different moments.

Fig. 4.  

Axial velocity-dependent electron density distributions of electron beam at (a) different gas pressures, (b) different cathode voltages, and (c) different cathode aperture sizes.

[1]
Christiansen J, Schultheiss C 1979 Z. Physik A 290 35 DOI: 10.1007/BF01408477
[2]
Cross W, Yin H, He W, Ronald K, Phelps A D R, Pitchford L C 2007 J. Phys. D: Appl. Phys. 40 1953 DOI: 10.1088/0022-3727/40/7/018
[3]
Frank K, Boggasch E, Christiansen J, Goertler A 1988 IEEE T. Plasma Sci. 16 317 DOI: 10.1109/27.3831
[4]
Akhmadeev Yu H, Denisov V V, Koval N N, Kovalsky S S, Lopatin I V, Schanin P M, Yakovlev V V 2017 Plasma Phys. Rep+. 43 67 DOI: 10.1134/S1063780X17010020
[5]
Tkotz R, Gortler A, Christiansen J, Dollinger S 1995 IEEE T. Plasma Sci. 23 309 DOI: 10.1109/27.402318
[6]
He W, Zhang L, Bowes D, Yin H, Ronald K, Phelps A D R, Cross A W 2015 Appl. Phys. Lett. 107 133501 DOI: 10.1063/1.4932099
[7]
Korolev Y D, Koval N N 2018 J. Phys. D: Appl. Phys. 51 323001 DOI: 10.1088/1361-6463/aacf10
[8]
Bowes D, Yin H, He W, Ronald K, Phelps A D R, Chen D, Zhang P, Chen X, Li D, Cross A W 2014 IEEE T. Plasma Sci. 42 2826 DOI: 10.1109/TPS.2014.2300691
[9]
Yin H, Cross A W, He W, Phelps A D R, Ronald K, Bowes D, Robertson C W 2009 Phys. Plasmas 16 063105 DOI: 10.1063/1.3155444
[10]
Zhao J, Yin H, Zhang L, He W, Zhang Q, Phelps A D R, Cross A W 2017 Phys. Plasmas 24 060703 DOI: 10.1063/1.4985684
[11]
Yin Y, He W, Zhang L, Yin H, Robertson C W, Cross A. W 2016 IEEE T. Electron Dev. 63 512 DOI: 10.1109/TED.2015.2502950
[12]
Shu G X, Yin H, Zhang L, Zhao J P, Liu G, Phelps A D R, Cross A W, He W 2018 IEEE Electron Dev. Lett 39 432 DOI: 10.1109/LED.2018.2794469
[13]
Stetter M, Felsner P, Christiansen J, Gortler A, Hintz G, Mehr T, Stark K, Tkotz R 1995 IEEE T. Plasma Sci. 23 283 DOI: 10.1109/27.402314
[14]
Arsov V, Frank K 2007 IEEE T. Plasma Sci. 35 83 DOI: 10.1109/TPS.2006.889296
[15]
Hu J, Rovey J L, Zhao W 2017 Rev. Sci. Instrum. 88 013302 DOI: 10.1063/1.4973776
[16]
Zhang J, Liu X 2017 Plasma Chem. Plasma P. 37 1211 DOI: 10.1007/s11090-017-9817-7
[17]
Gu X W, Meng L, Yan Y, Sun Y Q 2009 J. Infrared Millim. TE. 30 1083 DOI: 10.1007/s10762-009-9529-z
[18]
Varun, Dwivedi H K, Pal U N 2018 IEEE T. Electron Dev. 65 4607 DOI: 10.1109/TED.2018.2866211
[19]
Zhang J, Liu X, Zhang Q 2017 Phys. Plasmas 24 053515 DOI: 10.1063/1.4983326
[20]
Varun, Pal U N 2018 IEEE T. Electron Dev. 65 1542 DOI: 10.1109/TED.2018.2808175
[21]
Cetiner S O, Stoltz P, Messmer P, Cambier J L 2008 J. Appl. Phys. 103 023304 DOI: 10.1063/1.2832507
[22]
Pal U N, Prajapati J, Kumar N, Prakash R 2015 Indian J. Phys. 89 951 DOI: 10.1007/s12648-015-0668-x
[23]
Zhang Z, Yin Y, Bi L J, Chang Z W, Xu C P, Wang B, Meng L 2017 Phys. Plasmas 24 043103 DOI: 10.1063/1.4979353
[24]
Nieter C, Cary J R 2004 J. Comput. Phys. 196 448 DOI: 10.1016/j.jcp.2003.11.004
[25]
Mehr T, Arenz H, Bickel P, Christiansen J, Frank K, Gortler A, Heine F, Hofmann D, Kowalewicz R, Schlaug M 1995 IEEE T. Plasma Sci. 23 324 DOI: 10.1109/27.402320
[1] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[4] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[5] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[6] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[7] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[8] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[9] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[10] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[11] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[12] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[13] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[14] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[15] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
No Suggested Reading articles found!