A hot-electron driven scheme can be more effective than a laser-driven scheme within suitable hot-electron energy and target density. In our one-dimensional (1D) radiation hydrodynamic simulations, 20× pressure enhancement was achieved when the ignitor laser spike was replaced with a 60-keV hot-electron spike in a shock ignition target designed for the National Ignition Facility (NIF), which can lead to greater shell velocity. Higher hot-spot pressure at the deceleration phase was obtained owing to the greater shell velocity. More cold shell material is ablated into the hot spot, and it benefits the increases of the hot-spot pressure. Higher gain and a wider ignition window can be observed in the hot-electron-driven shock ignition.
* Project supported by the National Natural Science Foundation of China (Grant No. 11775203) and the Presidential Foundation of China Academy of Engineering Physics (Grant No. YZJJLX 2016007).
Cite this article:
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉) Hot-electron deposition and implosion mechanisms within electron shock ignition 2020 Chin. Phys. B 29 105201
Fig. 1.
The normalized Maxwellian distribution of hot-electron temperature of 40 keV, 60 keV, and 100 keV.
Fig. 2.
The energy depositions (solid lines) for the monoenergetic hot electrons with energies of 40 keV, 60 keV, and 100 keV. The density profile is shown as the dashed line.
Fig. 3.
The spatial moments (solid lines) of the electron-distribution function for the monoenergetic hot electrons with energies of 40 keV, 60 keV, and 100 keV. The density profile is shown as the dashed line.
Fig. 4.
The energy deposition (blue line) and the locally deposited flux (red line) of the 100-keV monoenergetic hot electron in DT plasma.
Fig. 5.
The gains versus the ignitor shock launching times. The black line represents LILAC calculations with the laser-driven shock ignition, and the colored lines are 1D simulations with the hot-electron-driven shock ignition with different hot-electron energies.
Fig. 6.
The density and pressure profiles after the ignitor shock launched for 0, 100, and 200 ps. Panels (a)–(c) for the laser spike driven, and panels (d)–(f) for the hot-electron spike driven. The highest gain targets in Fig. 5 are utilized. For the laser-driven shock ignition, the ignitor shock launching time is 9.6 ns, and for the hot-electron-driven shock ignition, the ignitor shock launching time is 10.3 ns.
Fig. 7.
The trajectory and implosity velocity for (a) the laser-driven shock ignition and (b) the hot-electron-driven shock ignition.
Fig. 8.
The target density profile (a), pressure profile (b), temperature profile (c), and adiabat profile (d) at stagnation without burn wave for the laser- and hot-electron-driven shock ignitions.
Fig. 9.
(a) The neutron rate, (b) target density profile, (c) pressure profile, (d) and ion temperature profile at peak neutron rate with burn wave for the laser- and hot-electron-driven shock ignitions.
[1]
Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001 DOI: 10.1103/PhysRevLett.102.245001
[2]
Theobald W, Betti R, Stoeckl C, Anderson K S, Delettrez J A, Glebov V Yu, Goncharov V N, Marshall F J, Maywar D N, McCrory R L, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Shvarts D, Smalyuk V A, Solodov A A, Yaakobi B, Zhou C D, Frenje J A, Li C K, Séguin F H, Petrasso R D, Perkins L J 2008 Phys. Plasmas 15 056306 DOI: 10.1063/1.2885197
[3]
Betti R, Zhou C D, Anderson K S, Perkins J L, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001 DOI: 10.1103/PhysRevLett.98.155001
Shang W L, Betti R, Hu S X, Woo K, Hao L, Ren C, Christopherson A R, Bose A, Theobald W 2017 Phys. Rev. Lett. 119 195001 DOI: 10.1103/PhysRevLett.119.195001
[10]
Gus’kov S, Ribeyre X, Touati M, Feugeas J L, Nicola Ph, Tikhonchuk V 2012 Phys. Rev. Lett. 109 255004 DOI: 10.1103/PhysRevLett.109.255004
[11]
Ribeyre X, Gus’kov S, Feugeas J L, Nicola Ph, Tikhonchuk V T 2013 Phys. Plasmas 20 062705 DOI: 10.1063/1.4811473
[12]
Piriz A R, Piriz S A, Tahir N A 2013 Phys. Plasmas 20 112704 DOI: 10.1063/1.4833680
[13]
Campbell E M, Hogan W J 1999 Plasma Phys. Control. Fusion 41 B39
[14]
Zhou C D, Betti R 2007 Phys. Plasmas 14 072703 DOI: 10.1063/1.2746812
[15]
Nora R, Betti R, Anderson K S, Shvydky A, Bose A, Woo K M, Christopherson A R, Marozas J A, Collins T J B, Radha P B, Hu S X, Epstein R, Marshall F J, McCrory R L, Sangster T C, Meyerhofer D D 2014 Phys. Plasmas 21 056316 DOI: 10.1063/1.4875331
[16]
Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Control. Fusion 55 103001 DOI: 10.1088/0741-3335/55/10/103001
[17]
Seka W, Edgell D H, Myatt J F, Maximov A V, Short R W, Goncharov V N, Baldis H A 2009 Phys. Plasmas 16 052701 DOI: 10.1063/1.3125242
[18]
Kemp A J, Fiuza F, Debayle A, Johzaki T, Mori W B, Patel P K, Sentoku Y, Silva L O 2014 Nucl. Fusion 54 054002 DOI: 10.1088/0029-5515/54/5/054002
[19]
Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S, Betti R 2015 Phys. Plasmas 22 056310 DOI: 10.1063/1.4920956
[20]
Solodov A A, Betti R 2008 Phys. Plasmas 15 042707 DOI: 10.1063/1.2903890
Delettrez J, Epstein R, Richardson M C, Jaanimagi P A, Henke B L 1987 Phys. Rev. A 36 3926 DOI: 10.1103/PhysRevA.36.3926
[24]
Anderson K, Betti R, Gardiner T A 2001 Bull. Am. Phys. Soc. 46 280
[25]
Bose A, Woo K M, Nora R, Betti R 2015 Phys. Plasmas 22 072702
[26]
Woo K M, Betti R, Bose A, Epstein R, Delettrez J A, Anderson K S, Yan R, Chang P Y, Jonathan D, Charissis M 2015 57th Annual Meeting of the APS Division of Plasma Physics Savannah, GA 16–20 November, 2015 (GO5.00003) (unpublished)
[27]
Anderson K S, Betti R, McKenty P W, Collins J B, Hohenberger M, Theobald W, Craxton R S, Delettrez J A, Lafon M, Marozas J A, Nora R, Skupsky S, Shvydky A 2013 Phys. Plasmas 20 056312 DOI: 10.1063/1.4804635
[28]
Goncharov V N, Sangster T C, Boehly T R, Hu S X, Igumenshchev I V, Marshall F J, McCrory R L, Meyerhofer D D, Radha P B, Seka W 2010 Phys. Rev. Lett. 14 165001
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.