Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 105201    DOI: 10.1088/1674-1056/aba9c3
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Hot-electron deposition and implosion mechanisms within electron shock ignition

Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉)
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

A hot-electron driven scheme can be more effective than a laser-driven scheme within suitable hot-electron energy and target density. In our one-dimensional (1D) radiation hydrodynamic simulations, 20× pressure enhancement was achieved when the ignitor laser spike was replaced with a 60-keV hot-electron spike in a shock ignition target designed for the National Ignition Facility (NIF), which can lead to greater shell velocity. Higher hot-spot pressure at the deceleration phase was obtained owing to the greater shell velocity. More cold shell material is ablated into the hot spot, and it benefits the increases of the hot-spot pressure. Higher gain and a wider ignition window can be observed in the hot-electron-driven shock ignition.

Keywords:  shock ignition      inertial confinement fusion      hot electron      plasma fusion  
Received:  01 June 2020      Revised:  12 July 2020      Accepted manuscript online:  28 July 2020
PACS:  52.58.-c (Other confinement methods)  
  52.57.-z (Laser inertial confinement)  
  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
  89.30.Jj (Nuclear fusion power)  
Corresponding Authors:  Corresponding author. E-mail: wanlishang@gmail.com   
About author: 
†Corresponding author. E-mail: wanlishang@gmail.com
* Project supported by the National Natural Science Foundation of China (Grant No. 11775203) and the Presidential Foundation of China Academy of Engineering Physics (Grant No. YZJJLX 2016007).

Cite this article: 

Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉) Hot-electron deposition and implosion mechanisms within electron shock ignition 2020 Chin. Phys. B 29 105201

Fig. 1.  

The normalized Maxwellian distribution of hot-electron temperature of 40 keV, 60 keV, and 100 keV.

Fig. 2.  

The energy depositions (solid lines) for the monoenergetic hot electrons with energies of 40 keV, 60 keV, and 100 keV. The density profile is shown as the dashed line.

Fig. 3.  

The spatial moments (solid lines) of the electron-distribution function for the monoenergetic hot electrons with energies of 40 keV, 60 keV, and 100 keV. The density profile is shown as the dashed line.

Fig. 4.  

The energy deposition (blue line) and the locally deposited flux (red line) of the 100-keV monoenergetic hot electron in DT plasma.

Fig. 5.  

The gains versus the ignitor shock launching times. The black line represents LILAC calculations with the laser-driven shock ignition, and the colored lines are 1D simulations with the hot-electron-driven shock ignition with different hot-electron energies.

Fig. 6.  

The density and pressure profiles after the ignitor shock launched for 0, 100, and 200 ps. Panels (a)–(c) for the laser spike driven, and panels (d)–(f) for the hot-electron spike driven. The highest gain targets in Fig. 5 are utilized. For the laser-driven shock ignition, the ignitor shock launching time is 9.6 ns, and for the hot-electron-driven shock ignition, the ignitor shock launching time is 10.3 ns.

Fig. 7.  

The trajectory and implosity velocity for (a) the laser-driven shock ignition and (b) the hot-electron-driven shock ignition.

Fig. 8.  

The target density profile (a), pressure profile (b), temperature profile (c), and adiabat profile (d) at stagnation without burn wave for the laser- and hot-electron-driven shock ignitions.

Fig. 9.  

(a) The neutron rate, (b) target density profile, (c) pressure profile, (d) and ion temperature profile at peak neutron rate with burn wave for the laser- and hot-electron-driven shock ignitions.

[1]
Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001 DOI: 10.1103/PhysRevLett.102.245001
[2]
Theobald W, Betti R, Stoeckl C, Anderson K S, Delettrez J A, Glebov V Yu, Goncharov V N, Marshall F J, Maywar D N, McCrory R L, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Shvarts D, Smalyuk V A, Solodov A A, Yaakobi B, Zhou C D, Frenje J A, Li C K, Séguin F H, Petrasso R D, Perkins L J 2008 Phys. Plasmas 15 056306 DOI: 10.1063/1.2885197
[3]
Betti R, Zhou C D, Anderson K S, Perkins J L, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001 DOI: 10.1103/PhysRevLett.98.155001
[4]
Atzeni S, Marocchino A, Schiavi A, Schurtz G 2013 New J. Phys. 15 045004 DOI: 10.1088/1367-2630/15/4/045004
[5]
Shang W, Wei H, Li Z, Yi R, Zhu T, Song T, Huang C, Yang J 2013 Phys. Plasmas 20 102702 DOI: 10.1063/1.4824112
[6]
Lafon M, Ribeyre X, Schurtz G 2013 Phys. Plasmas 20 022708 DOI: 10.1063/1.4792265
[7]
Perkins L J, Betti R, LaFortune K N, Williams W H 2009 Phys. Rev. Lett. 103 045004 DOI: 10.1103/PhysRevLett.103.045004
[8]
Canaud B, Temporal M 2010 New J. Phys. 12 043037 DOI: 10.1088/1367-2630/12/4/043037
[9]
Shang W L, Betti R, Hu S X, Woo K, Hao L, Ren C, Christopherson A R, Bose A, Theobald W 2017 Phys. Rev. Lett. 119 195001 DOI: 10.1103/PhysRevLett.119.195001
[10]
Gus’kov S, Ribeyre X, Touati M, Feugeas J L, Nicola Ph, Tikhonchuk V 2012 Phys. Rev. Lett. 109 255004 DOI: 10.1103/PhysRevLett.109.255004
[11]
Ribeyre X, Gus’kov S, Feugeas J L, Nicola Ph, Tikhonchuk V T 2013 Phys. Plasmas 20 062705 DOI: 10.1063/1.4811473
[12]
Piriz A R, Piriz S A, Tahir N A 2013 Phys. Plasmas 20 112704 DOI: 10.1063/1.4833680
[13]
Campbell E M, Hogan W J 1999 Plasma Phys. Control. Fusion 41 B39
[14]
Zhou C D, Betti R 2007 Phys. Plasmas 14 072703 DOI: 10.1063/1.2746812
[15]
Nora R, Betti R, Anderson K S, Shvydky A, Bose A, Woo K M, Christopherson A R, Marozas J A, Collins T J B, Radha P B, Hu S X, Epstein R, Marshall F J, McCrory R L, Sangster T C, Meyerhofer D D 2014 Phys. Plasmas 21 056316 DOI: 10.1063/1.4875331
[16]
Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Control. Fusion 55 103001 DOI: 10.1088/0741-3335/55/10/103001
[17]
Seka W, Edgell D H, Myatt J F, Maximov A V, Short R W, Goncharov V N, Baldis H A 2009 Phys. Plasmas 16 052701 DOI: 10.1063/1.3125242
[18]
Kemp A J, Fiuza F, Debayle A, Johzaki T, Mori W B, Patel P K, Sentoku Y, Silva L O 2014 Nucl. Fusion 54 054002 DOI: 10.1088/0029-5515/54/5/054002
[19]
Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S, Betti R 2015 Phys. Plasmas 22 056310 DOI: 10.1063/1.4920956
[20]
Solodov A A, Betti R 2008 Phys. Plasmas 15 042707 DOI: 10.1063/1.2903890
[21]
Li C K, Petrasso R D 2006 Phys. Rev. E 73 016402 DOI: 10.1103/PhysRevE.73.016402
[22]
Reik H G, Risken H 1961 Phys. Rev. 124 777 DOI: 10.1103/PhysRev.124.777
[23]
Delettrez J, Epstein R, Richardson M C, Jaanimagi P A, Henke B L 1987 Phys. Rev. A 36 3926 DOI: 10.1103/PhysRevA.36.3926
[24]
Anderson K, Betti R, Gardiner T A 2001 Bull. Am. Phys. Soc. 46 280
[25]
Bose A, Woo K M, Nora R, Betti R 2015 Phys. Plasmas 22 072702
[26]
Woo K M, Betti R, Bose A, Epstein R, Delettrez J A, Anderson K S, Yan R, Chang P Y, Jonathan D, Charissis M 2015 57th Annual Meeting of the APS Division of Plasma Physics Savannah, GA 16–20 November, 2015 (GO5.00003) (unpublished)
[27]
Anderson K S, Betti R, McKenty P W, Collins J B, Hohenberger M, Theobald W, Craxton R S, Delettrez J A, Lafon M, Marozas J A, Nora R, Skupsky S, Shvydky A 2013 Phys. Plasmas 20 056312 DOI: 10.1063/1.4804635
[28]
Goncharov V N, Sangster T C, Boehly T R, Hu S X, Igumenshchev I V, Marshall F J, McCrory R L, Meyerhofer D D, Radha P B, Seka W 2010 Phys. Rev. Lett. 14 165001
[29]
Lewis H W 1950 Phys. Rev. 78 526 DOI: 10.1103/PhysRev.78.526
[30]
Ribeyre X, Schurtz G, Lafon M, Galera S, Weber S 2009 Plasma Phys. Control. Fusion 51 015013 DOI: 10.1088/0741-3335/51/1/015013
[31]
Shang W, Yang J, Dong Y 2013 Appl. Phys. Lett. 102 094105 DOI: 10.1063/1.4794845
[32]
Lindl J 1995 Phys. Plasmas 2 3933 DOI: 10.1063/1.871025
[33]
Walsh C A, Chittenden J P, McGlinchey K, Niasse N P L, Appelbe B D 2017 Phys. Rev. Lett. 118 155001 DOI: 10.1103/PhysRevLett.118.155001
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[3] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[4] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[5] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[6] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[7] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[8] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[9] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[10] High-power terahertz pulse sensor with overmoded structure
Wang Xue-Feng (王雪锋), Wang Jian-Guo (王建国), Wang Guang-Qiang (王光强), Li Shuang (李爽), Xiong Zheng-Feng (熊正锋). Chin. Phys. B, 2014, 23(5): 058701.
[11] Kink effect in current–voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier
Ma Xiao-Hua (马晓华), Lü Min (吕敏), Pang Lei (庞磊), Jiang Yuan-Qi (姜元祺), Yang Jing-Zhi (杨靖治), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(2): 027302.
[12] Impact of substrate injected hot electrons on hot carrier degradation in a 180-nm NMOSFET
Liang Bin (梁斌), Chen Jian-Jun (陈建军), Chi Ya-Qing (池雅庆). Chin. Phys. B, 2014, 23(11): 117304.
[13] Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility
Wang Feng (王峰), Peng Xiao-Shi (彭晓世), Kang Dong-Guo (康洞国), Liu Shen-Ye (刘慎业), Xu Tao (徐涛). Chin. Phys. B, 2013, 22(11): 115204.
[14] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
Zhao Zong-Qing (赵宗清), He Wei-Hua (何卫华), Wang Jian (王剑), Hao Yi-Dan (郝轶丹), Cao Lei-Feng (曹磊峰), Gu Yu-Qiu (谷渝秋), Zhang Bao-Han (张保汉). Chin. Phys. B, 2013, 22(10): 104202.
[15] Emission spectrum from an Al/Mg tracer in the blow-off region of a radiatively ablated capsule
Pu Yu-Dong(蒲昱东), Chen Bo-Lun(陈伯伦), Zhang Lu(张璐), Yang Jia-Ming(杨家敏), Huang Tian-Xuan(黄天晅), and Ding Yong-Kun(丁永坤) . Chin. Phys. B, 2011, 20(9): 095203.
No Suggested Reading articles found!