Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080505    DOI: 10.1088/1674-1056/ab9c03
Special Issue: SPECIAL TOPIC — Water at molecular level
SPECIAL TOPIC—Water at molecular level Prev   Next  

Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation

Ming-Zhe Shao(邵明哲)1, Yan-Ting Wang(王延颋)2, Xin Zhou(周昕)3
1 College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
2 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

It is very important to determine the phase transition temperature, such as the water/ice coexistence temperature in various water models, via molecular simulations. We show that a single individual direct simulation is sufficient to get the temperature with high accuracy and small computational cost based on the generalized canonical ensemble (GCE). Lennard-Jones fluids, the atomic water models, such as TIP4P/2005, TIP4P/ICE, and the mW water models are applied to illustrate the method. We start from the coexistent system of the two phases with a plane interface, then equilibrate the system under the GCE, which can stabilize the coexistence of the phases, to directly derive the phase transition temperature without sensitive dependence on the applied parameters of the GCE and the size of the simulation systems. The obtained result is in excellent agreement with that in literatures. These features make the GCE approach in determining the phase transition temperature of systems be robust, easy to use, and particularly good at working on computationally expensive systems.

Keywords:  phase transition      enhanced sampling      metastable state      molecular dynamics  
Received:  26 April 2020      Revised:  06 June 2020      Published:  05 August 2020
PACS:  05.70.-a (Thermodynamics)  
  05.70.Fh (Phase transitions: general studies)  
  02.70.Ns (Molecular dynamics and particle methods)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574310, 11674345, and 21733010) and Beijing National Laboratory for Molecular Sciences, China (Grant No. BNLMS201835).

Corresponding Authors:  Xin Zhou     E-mail:

Cite this article: 

Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕) Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation 2020 Chin. Phys. B 29 080505

[1] Matsumoto M, Saito S and Ohmine I 2002 Nature 416 409
[2] Bai G, Gao D, Liu Z, Zhou X and Wang J 2019 Nature 576 437
[3] Russo J, Romano F and Tanaka H 2014 Nature Mater. 13 733
[4] Li T, Donadio D, Russo G and Galli G 2011 Phys. Chem. Chem. Phys. 13 19807
[5] Conde M M, Rovere M and Gallo P 2017 J. Chem. Phys. 147 244506
[6] Gao G T, Zeng X C and Tanaka H 2000 J. Chem. Phys. 112 8534
[7] Molinero V and Moore E B 2009 J. Phys. Chem. B 113 4008
[8] Moore E B and Molinero V 2011 Nature 479 506
[9] Sanz E, Vega C, Abascal J L F and MacDowell L G 2004 J. Chem. Phys. 121 1165
[10] Sanz E, Vega C, Abascal J L F and MacDowell L G 2004 Phys. Rev. Lett. 92 255701
[11] Smit B 1992 J. Chem. Phys. 96 8639
[12] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[13] Vega C and Abascal J L 2011 Phys. Chem. Chem. Phys. 13 19663
[14] Kroes G J 1992 Surf. Sci. 275 365
[15] Vega C, Sanz E and Abascal J L F 2005 J. Chem. Phys. 122 114507
[16] Ghoufi A, Goujon F, Lachet V and Malfreyt P 2008 J. Chem. Phys. 128 154716
[17] Vega C and de Miguel E 2007 J. Chem. Phys. 126 154707
[18] Alejandre J, Tildesley D J and Chapela G A 1995 J. Chem. Phys. 102 4574
[19] Ladd A J C and Woodcock L V 1977 Chem. Phys. Lett. 51 155
[20] Bryk T and Haymet A D J 2002 J. Chem. Phys. 117 10258
[21] Conde M M, Gonzalez M A, Abascal J L F and Vega C 2013 J. Chem. Phys. 139 154505
[22] Abascal J L F and Vega C 2005 J. Chem. Phys. 123 234505
[23] Xu S, Zhou X and Ou-Yang Z C 2012 Commun. Comput. Phys. 12 1293
[24] Jeong S, Jho Y and Zhou X 2015 Sci. Rep. 5 15955
[25] Zhao L, Xu S, Tu Y S and Zhou X 2017 Chin. Phys. B 26 060202
[26] Yin L, Xu S, Jeong S, Jho Y, Wang J and Zhou X 2017 Acta Phys. Sin. 66 136102(in Chinese)
[27] Xu S, Zhou X, Jiang Y and Wang Y T 2015 Sci. China Phys. Mech. 58 590501
[28] Zhang C B, Ye F F, Li M and Zhou X 2019 Sci. China-Phys. Mech. Astron. 62 67012
[29] Hoover W 1985 Phys. Rev. A 31 1695
[30] Abascal J L F, Sanz E, García Fernández R and Vega C 2005 J. Chem. Phys. 122 234511
[31] Broughton J Q and Gilmer G H 1986 J. Chem. Phys. 84 5741
[32] García Fernández R, Abascal J L and Vega C 2006 J. Chem. Phys. 124 144506
[1] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[2] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[3] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[4] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[5] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[6] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[7] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[8] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[9] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[10] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[11] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[12] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[13] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[14] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[15] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
No Suggested Reading articles found!