Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080701    DOI: 10.1088/1674-1056/ab90f7
GENERAL Prev   Next  

Simulation study of high voltage GaN MISFETs with embedded PN junction

Xin-Xing Fei(费新星)1, Ying Wang(王颖)2, Xin Luo(罗昕)1, Cheng-Hao Yu(于成浩)2
1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  

In this paper, we propose a new enhanced GaN MISFET with embedded pn junction, i.e., EJ-MISFET, to enhance the breakdown voltage. The embedded pn junction is used to improve the simulated device electric field distribution between gate and drain, thus achieving an enhanced breakdown voltage (BV). The proposed simulated device with LGD=15 μm presents an excellent breakdown voltage of 2050 V, which is attributed to the improvement of the device electric field distribution between gate and drain. In addition, the ON-resistance (RON) of 15.37 Ω·mm and Baliga's figure of merit of 2.734 GW·cm-2 are achieved in the optimized EJ-MISFET. Compared with the field plate conventional GaN MISFET (FPC-MISFET) without embedded pn junction structure, the proposed simulated device increases the BV by 32.54% and the Baliga's figure of merit is enhanced by 71.3%.

Keywords:  TCAD      Baliga's figure of merit (BFOM)      breakdown voltage (BV)  
Received:  24 February 2020      Revised:  23 April 2020      Accepted manuscript online: 
PACS:  07.05.Tp (Computer modeling and simulation)  
  94.20.Ss (Electric fields; current system)  
  51.50.+v (Electrical properties)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61774052) and the Excellent Youth Foundation of Zhejiang Province, China (Grant No. LR17F040001).

Corresponding Authors:  Ying Wang     E-mail:  wangying7711@yahoo.com

Cite this article: 

Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩) Simulation study of high voltage GaN MISFETs with embedded PN junction 2020 Chin. Phys. B 29 080701

[1] Chen K J, Häberlen O, Lidow A, Tsai C l, Ueda T, Uemoto Y and Wu Y 2017 IEEE Trans. Electron. Dev. 64 779
[2] Huang X, Liu Z, Lee F C and Li Q 2015 IEEE Trans. Electron. Dev. 62 270
[3] Ma X H, Zhang Y M, Wang X H, Yuan T T, Pang L, Chen W W and Liu X Y 2015 Chin. Phys. B 24 027101
[4] Duan B X and Yang Y T 2012 Chin. Phys. B 21 057201
[5] Liu J, Wang L Q and Huang Z X 2019 Acta Phys. Sin. 68 248501(in Chinese)
[6] Ishida M, Ueda T, Tanaka T and Ueda D 2013 IEEE Trans. Electron Dev. 60 3053
[7] Chen X B 1998 Microelectron. J. 29 1005
[8] Chen X B and Sin J 2001 IEEE Trans. Electron. Dev. 48 344
[9] Zhao Z, Zhao Z, Luo Q and Du J 2013 Electron. Lett. 49 1638
[10] Huang W, Chow T P, Niiyama Y, Nomura T and Yoshida S 2009 IEEE Electron Dev. Lett. 30 1018
[11] Wei M, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305
[12] Karmalkar S, Deng J Y and Shur M S 2001 IEEE Electron Dev. Lett. 22 373
[13] Zhao S L, Wang Y, Yang X L, Lin Z Y, Wang C, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 097305
[14] Yang C, Luo X R, Zhang A B, Deng S Y, Quyang D F, Peng F, Wei J, Zhang B and Li Z J 2018 IEEE Trans. Electron. Dev. 65 5203
[15] Xie G, Edward X, Niloufar H, Zhang B, Fred Y F and Wai T N 2012 Chin. Phys. B 21 086105
[16] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M 2011 IEEE Electron. Dev. Lett. 32 542
[17] Yang C, Xiong J Y, Wei J, Wu J F, Peng F, S Deng Y, Zhang and Luo X R 2016 Superlattices Microstruct. 92 92
[18] Yang C, Luo X R, Sun T, Zh A B, Ouyang D F, Deng S Y and Zhang B 2019 Nanoscale Res. Lett. 14 191
[19] Wang Zh X, Du L, Liu J W, Wang Y, jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y 2020 Chin. Phys. B 29 027301
[20] Srivastava P, Das J, Visalli D, Hove M V, Malinowski P E, Marcon D, Lenci S, Geens K, Cheng K, Leys M, Decoutere S, Mertens R P and Borghs G 2011 IEEE Electron Dev. Lett. 32 30
[21] Tang G, Wei J, Zhang Z, Tang X, Hua M and Chen K J 2017 IEEE Electron. Dev. Lett. 38 937
[22] Sentaurus Device User Guide, Synopsys TCAD 2013
[23] Zhou Q, Yang Y, Hu K, Zhu R, Chen W and Zhang B 2017 IEEE Trans. Ind. Electron. 64 8971
[24] Hua M, Wei J, Tang G, Zhang Zh, Qian Q, Cai X, Wang N and Chen K J 2017 IEEE Electron Dev. Lett. 38 929
[25] Lu B, Matioli E and Palacios T 2012 IEEE Electron. Dev. Lett. 33 360
[26] Huang W, Khan T and Chow T P 2006 IEEE Electron. Dev. Lett. 27 796
[27] Im K S, Ha J B, Kim K W, Lee J S, Kim D S, Hahm S H and Lee J H 2010 IEEE Electron. Dev. Lett. 31 192
[28] Brown D F, Shinohara K, Corrion A L, Chu R, Williams A, Wong J C, Rodriguez I A, Grabar R, Johnson M, Butler C M, Santos D, Burnham S D, Robinson J F, Zehnder D, Kim S J, Oh T C and Micovic M 2013 IEEE Electron. Dev. Lett. 34 1118
[29] Hu Z, Nomoto K, Qi M, Li W, Zhu M, Gao X, Jena D and Xing H 2017 IEEE Electron. Dev. Lett. 38 1071
[30] Zhang Y, Liu Z, Tadjer M J, Sun M, Piedra D, Hatem C, Anderson T J, Luna L E, Nath A, Koehler A D, Okumura H, Hu J, Zhang X, Gao X, Feigelson B N, Hobart K D and Palacios T 2017 IEEE Electron. Dev. Lett. 38 1097
[31] Ji D, Agarwal A, Li W, Keller S and Chowdhury S 2018 IEEE Trans. Electron. Dev. 65 483
[32] Miao M S, Weber J R and Van de Walle C G 2010 J. Appl. Phys. 107 123713
[33] Mojab A, Hemmat Z, Riazmontazer H and Rahnamaee A 2017 IEEE Trans. Electron. Dev. 64 796
[34] Bai Z Y, Du J F, Liu Y, Xin Q, Liu Y and Yu Q 2017 Solid-state Elect. 133 31
[35] Tang Z K, Q Jiang M, Lu Y Y, Huang S, Yang S, Tang X and Chen K J 2013 IEEE Electron. Dev. Lett. 34 1373
[36] Zhao S L, Hou B, Chen W, Mi M, Zheng J, Zhang J, Ma X and Hao Y 2016 IEEE Trans. Power Electron. 31 1517
[37] Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888
[38] Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B and Wang M J 2018 IEEE Trans. Electron. Dev. 65 1728
[39] Hu Q, Li S, Li T, Wang X, Li X and Wu Y 2018 IEEE Electron Dev. Lett. 39 1377
[40] Tao M, Liu S F, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K, Shen B and Wang M J 2018 IEEE Trans. Electron. Dev. 65 1453
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[3] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[4] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[5] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[6] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[7] Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures
Jia-Xin Wang(王加鑫), Xiao-Jing Li(李晓静), Fa-Zhan Zhao(赵发展), Chuan-Bin Zeng(曾传滨), Duo-Li Li(李多力), Lin-Chun Gao(高林春), Jiang-Jiang Li(李江江), Bo Li(李博), Zheng-Sheng Han(韩郑生), and Jia-Jun Luo(罗家俊). Chin. Phys. B, 2021, 30(7): 078501.
[8] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[9] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[10] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[11] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[12] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[13] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[14] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[15] Impact of neutron-induced displacement damage on the single event latchup sensitivity of bulk CMOS SRAM
Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yin-Hong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Li-Li Ding(丁李利), Jia-Nan Wei(魏佳男), Wen Zhao(赵雯). Chin. Phys. B, 2017, 26(1): 018501.
No Suggested Reading articles found!