|
|
Simulation study of high voltage GaN MISFETs with embedded PN junction |
Xin-Xing Fei(费新星)1, Ying Wang(王颖)2, Xin Luo(罗昕)1, Cheng-Hao Yu(于成浩)2 |
1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract In this paper, we propose a new enhanced GaN MISFET with embedded pn junction, i.e., EJ-MISFET, to enhance the breakdown voltage. The embedded pn junction is used to improve the simulated device electric field distribution between gate and drain, thus achieving an enhanced breakdown voltage (BV). The proposed simulated device with LGD=15 μm presents an excellent breakdown voltage of 2050 V, which is attributed to the improvement of the device electric field distribution between gate and drain. In addition, the ON-resistance (RON) of 15.37 Ω·mm and Baliga's figure of merit of 2.734 GW·cm-2 are achieved in the optimized EJ-MISFET. Compared with the field plate conventional GaN MISFET (FPC-MISFET) without embedded pn junction structure, the proposed simulated device increases the BV by 32.54% and the Baliga's figure of merit is enhanced by 71.3%.
|
Received: 24 February 2020
Revised: 23 April 2020
Accepted manuscript online:
|
PACS:
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
94.20.Ss
|
(Electric fields; current system)
|
|
51.50.+v
|
(Electrical properties)
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774052) and the Excellent Youth Foundation of Zhejiang Province, China (Grant No. LR17F040001). |
Corresponding Authors:
Ying Wang
E-mail: wangying7711@yahoo.com
|
Cite this article:
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩) Simulation study of high voltage GaN MISFETs with embedded PN junction 2020 Chin. Phys. B 29 080701
|
[1] |
Chen K J, Häberlen O, Lidow A, Tsai C l, Ueda T, Uemoto Y and Wu Y 2017 IEEE Trans. Electron. Dev. 64 779
|
[2] |
Huang X, Liu Z, Lee F C and Li Q 2015 IEEE Trans. Electron. Dev. 62 270
|
[3] |
Ma X H, Zhang Y M, Wang X H, Yuan T T, Pang L, Chen W W and Liu X Y 2015 Chin. Phys. B 24 027101
|
[4] |
Duan B X and Yang Y T 2012 Chin. Phys. B 21 057201
|
[5] |
Liu J, Wang L Q and Huang Z X 2019 Acta Phys. Sin. 68 248501(in Chinese)
|
[6] |
Ishida M, Ueda T, Tanaka T and Ueda D 2013 IEEE Trans. Electron Dev. 60 3053
|
[7] |
Chen X B 1998 Microelectron. J. 29 1005
|
[8] |
Chen X B and Sin J 2001 IEEE Trans. Electron. Dev. 48 344
|
[9] |
Zhao Z, Zhao Z, Luo Q and Du J 2013 Electron. Lett. 49 1638
|
[10] |
Huang W, Chow T P, Niiyama Y, Nomura T and Yoshida S 2009 IEEE Electron Dev. Lett. 30 1018
|
[11] |
Wei M, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305
|
[12] |
Karmalkar S, Deng J Y and Shur M S 2001 IEEE Electron Dev. Lett. 22 373
|
[13] |
Zhao S L, Wang Y, Yang X L, Lin Z Y, Wang C, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 097305
|
[14] |
Yang C, Luo X R, Zhang A B, Deng S Y, Quyang D F, Peng F, Wei J, Zhang B and Li Z J 2018 IEEE Trans. Electron. Dev. 65 5203
|
[15] |
Xie G, Edward X, Niloufar H, Zhang B, Fred Y F and Wai T N 2012 Chin. Phys. B 21 086105
|
[16] |
Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M 2011 IEEE Electron. Dev. Lett. 32 542
|
[17] |
Yang C, Xiong J Y, Wei J, Wu J F, Peng F, S Deng Y, Zhang and Luo X R 2016 Superlattices Microstruct. 92 92
|
[18] |
Yang C, Luo X R, Sun T, Zh A B, Ouyang D F, Deng S Y and Zhang B 2019 Nanoscale Res. Lett. 14 191
|
[19] |
Wang Zh X, Du L, Liu J W, Wang Y, jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y 2020 Chin. Phys. B 29 027301
|
[20] |
Srivastava P, Das J, Visalli D, Hove M V, Malinowski P E, Marcon D, Lenci S, Geens K, Cheng K, Leys M, Decoutere S, Mertens R P and Borghs G 2011 IEEE Electron Dev. Lett. 32 30
|
[21] |
Tang G, Wei J, Zhang Z, Tang X, Hua M and Chen K J 2017 IEEE Electron. Dev. Lett. 38 937
|
[22] |
Sentaurus Device User Guide, Synopsys TCAD 2013
|
[23] |
Zhou Q, Yang Y, Hu K, Zhu R, Chen W and Zhang B 2017 IEEE Trans. Ind. Electron. 64 8971
|
[24] |
Hua M, Wei J, Tang G, Zhang Zh, Qian Q, Cai X, Wang N and Chen K J 2017 IEEE Electron Dev. Lett. 38 929
|
[25] |
Lu B, Matioli E and Palacios T 2012 IEEE Electron. Dev. Lett. 33 360
|
[26] |
Huang W, Khan T and Chow T P 2006 IEEE Electron. Dev. Lett. 27 796
|
[27] |
Im K S, Ha J B, Kim K W, Lee J S, Kim D S, Hahm S H and Lee J H 2010 IEEE Electron. Dev. Lett. 31 192
|
[28] |
Brown D F, Shinohara K, Corrion A L, Chu R, Williams A, Wong J C, Rodriguez I A, Grabar R, Johnson M, Butler C M, Santos D, Burnham S D, Robinson J F, Zehnder D, Kim S J, Oh T C and Micovic M 2013 IEEE Electron. Dev. Lett. 34 1118
|
[29] |
Hu Z, Nomoto K, Qi M, Li W, Zhu M, Gao X, Jena D and Xing H 2017 IEEE Electron. Dev. Lett. 38 1071
|
[30] |
Zhang Y, Liu Z, Tadjer M J, Sun M, Piedra D, Hatem C, Anderson T J, Luna L E, Nath A, Koehler A D, Okumura H, Hu J, Zhang X, Gao X, Feigelson B N, Hobart K D and Palacios T 2017 IEEE Electron. Dev. Lett. 38 1097
|
[31] |
Ji D, Agarwal A, Li W, Keller S and Chowdhury S 2018 IEEE Trans. Electron. Dev. 65 483
|
[32] |
Miao M S, Weber J R and Van de Walle C G 2010 J. Appl. Phys. 107 123713
|
[33] |
Mojab A, Hemmat Z, Riazmontazer H and Rahnamaee A 2017 IEEE Trans. Electron. Dev. 64 796
|
[34] |
Bai Z Y, Du J F, Liu Y, Xin Q, Liu Y and Yu Q 2017 Solid-state Elect. 133 31
|
[35] |
Tang Z K, Q Jiang M, Lu Y Y, Huang S, Yang S, Tang X and Chen K J 2013 IEEE Electron. Dev. Lett. 34 1373
|
[36] |
Zhao S L, Hou B, Chen W, Mi M, Zheng J, Zhang J, Ma X and Hao Y 2016 IEEE Trans. Power Electron. 31 1517
|
[37] |
Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888
|
[38] |
Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B and Wang M J 2018 IEEE Trans. Electron. Dev. 65 1728
|
[39] |
Hu Q, Li S, Li T, Wang X, Li X and Wu Y 2018 IEEE Electron Dev. Lett. 39 1377
|
[40] |
Tao M, Liu S F, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K, Shen B and Wang M J 2018 IEEE Trans. Electron. Dev. 65 1453
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|