Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097302    DOI: 10.1088/1674-1056/ab99b3
RAPID COMMUNICATION Prev   Next  

Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature

Huying Zheng(郑湖颖)1, Zhiyang Chen(陈智阳)1, Hai Zhu(朱海)1, Ziying Tang(汤梓荧)1, Yaqi Wang(王亚琪)1, Haiyuan Wei(韦海园)1, Chongxin Shan(单崇新)2
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant oscillator strength, the room-temperature Rabi splitting energy can be enhanced to be as large as 60 meV. The results of excitonic polariton dispersion can be well described using the coupling wave model. It is demonstrated that mode modification between polariton branches allowing, just by controlling the pumping location, to tune the photonic fraction in the different detuning can be investigated comprehensively. Our results present a direct observation of the exciton-polariton dispersions based on two-dimensional oxide semiconductor quantum wells, thus provide a feasible road for coupling of exciton with photon and pave the way for realizing novel polariton-type optoelectronic devices.
Keywords:  quantum wells      exciton      polariton      microcavity  
Received:  29 April 2020      Revised:  04 June 2020      Published:  05 September 2020
PACS:  73.21.Fg (Quantum wells)  
  71.35.-y (Excitons and related phenomena)  
  42.55.Sa (Microcavity and microdisk lasers)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974433, 91833301, and 11974122), the Guangdong Natural Science Fund for Distinguished Young Scholars, China (Grant No. 2016A030306044), and the Science and Technology Program of Guangzhou, China (Grant No. 201707020014).
Corresponding Authors:  Hai Zhu     E-mail:  zhuhai5@mail.sysu.edu.cn

Cite this article: 

Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新) Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature 2020 Chin. Phys. B 29 097302

[1] Deng H, Weihs G, Santori C, Bloch J and Yamamoto Y 2002 Science 298 199
[2] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M J, Marchetti F M, Szymanska M H, Andre R, Staehli J L, Savona V, Littlewood P B, Deveaud B and Dang L S 2006 Nature 443 409
[3] Romanelli M, Leyder C, Karr J P, Giacobino E and Bramati A 2007 Phys. Rev. Lett. 98 106401
[4] Byrnes T, Kim N Y and Yamamoto Y 2014 Nat. Phys. 10 803
[5] Sanvitto D and Kena-Cohen S 2016 Nat. Mater. 15 1061
[6] Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis K S, Dominici L, De Giorgi M, Maier S A, Gigli G, Kena-Cohen S and Sanvitto D 2017 Nat. Phys. 13 837
[7] Lagoudakis K G, Wouters M, Richard M, Baas A, Carusotto I, Andre R, Dang L and Deveaud-Pledran B 2008 Nat. Phys. 4 706
[8] Christopoulos S, von Hogersthal G B H, Grundy A J D, Lagoudakis P G, Kavokin A V, Baumberg J J, Christmann G, Butte R, Feltin E, Carlin J F and Grandjean N 2007 Phys. Rev. Lett. 98 126405
[9] Kang J W, Song B Y, Liu W J, Park S J, Agarwal R and Cho C H 2019 Sci. Adv. 5 eaau9338
[10] Ballarini D, De Giorgi M, Cancellieri E, Houdre R, Giacobino E, Cingolani R, Bramati A, Gigli G and Sanvitto D 2013 Nat. Commun. 4 1778
[11] Kéna-Cohen S and Forrest S R 2010 Nat. Photon. 4 371
[12] Daskalakis K S, Maier S A, Murray R and Kéna-Cohen S 2014 Nat. Mater. 13 271
[13] Zhao F Q, Zhang M and Bai J H 2015 Chin. Phys. B 24 097105
[14] Chen A Q, Zhu H, Wu Y Y, Yang D C, Li J Y, Yu S F, Chen Z Y, Ren Y H, Gui X C, Wang S P and Tang Z K 2018 Adv. Opt. Mater. 6 1800407
[15] Liang Y C, Liu K K, Lu Y J, Zhao Q and Shan C X 2018 Chin. Phys. B 27 078102
[16] Lu Y J, Shi Z F, Shan C X and Shen D Z 2017 Chin. Phys. B 26 047703
[17] Sun L X, Chen Z H, Ren Q J, Yu K, Bai L H, Zhou W, Xiong H, Zhu Z Q and Shen X C 2008 Phys. Rev. Lett. 100 156403
[18] Duan Q, Xu D, Liu W, Lu J, Zhang L, Wang J, Wang Y, Gu J, Hu T, Xie W, Shen X and Chen Z 2013 Appl. Phys. Lett. 103 022103
[19] Zhang S F, Wei X, Dong H, Sun L, Ling Y, Jian L, Yu D, Shen W, Shen X and Chen Z 2012 Appl. Phys. Lett. 100 101912
[20] Schmidt-Grund R, Rheinlaender B, Czekalla C, Benndorf G, Hochmut H, Rahm A, Lorenz M and Grandmann M 2007 Superlattices & Microstruct. 41 360
[21] Kalusniak S, Sadofev S, Halm S and Henneberger F 2011 Appl. Phys. Lett. 98 011101
[22] Halm S, Kalusniak S, Sadofev S, Wunsche H J and Henneberger F 2011 Appl. Phys. Lett. 99 181121
[23] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[24] Timofeev V and Sanvitto D 2012 Exciton Polaritons in Microcavities (Berlin: Springer) Vol. 172
[25] Ferrier L, Wertz E, Johne R, Solnyshkov D D, Senellart P, Sagnes I, Lemaitre A, Malpuech G and Bloch J 2011 Phys. Rev. Lett. 106 126401
[26] Bhattacharya P, Frost T, Deshpande S, Baten M Z, Hazari A and Das A 2014 Phys. Rev. Lett. 112 236802
[27] Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaître A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G and Bloch J 2010 Nat. Phys. 6 860
[28] Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
[1] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[2] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[7] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[8] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[9] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[10] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[11] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[12] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[13] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[14] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[15] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
No Suggested Reading articles found!