Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080702    DOI: 10.1088/1674-1056/ab90e6
GENERAL Prev   Next  

Structural and optical characteristic features of RF sputtered CdS/ZnO thin films

Ateyyah M Al-Baradi1, Fatimah A Altowairqi1, A A Atta1,2, Ali Badawi1, Saud A Algarni1, Abdulraheem S A Almalki3, A M Hassanien4, A Alodhayb5, A M Kamal6, M M El-Nahass2
1 Department of Physics, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
2 Department of Physics, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt;
3 Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia;
4 Department of Physics, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Saudi Arabia;
5 Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
6 Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

In this study, CdS/ZnO (2:3 mol%) thin films are successfully deposited on quartz substrates by using the sputtering technique. Good images on the structural and optical characteristic features of CdS/ZnO thin films before and after annealing are obtained. The CdS/ZnO thin films are annealed respectively at temperatures of 373 K, 473 K, and 573 K and the structural features are examined by XRD, ATR-FTIR, and FESEM. The optical properties of CdS/ZnO thin films such as refractive indices, absorption coefficients, optical band gap energy values, Urbach energy values, lattice dielectric constants, and high frequency dielectric constants are determined from spectrophotometer data recorded over the spectral range of 300 nm-2500 nm. Dispersion parameters are investigated by using a single-oscillator model. Photoluminescence spectra of CdS/ZnO thin films show an overall decrease in their intensity peaks after annealing. The third-order nonlinear optical parameter, and nonlinear refractive index are also estimated.

Keywords:  CdS/ZnO      thin films      structural &      optical properties  
Received:  27 March 2020      Revised:  26 April 2020      Published:  05 August 2020
PACS:  07.79.-v (Scanning probe microscopes and components)  
  73.61.-r (Electrical properties of specific thin films)  

Project supported by the Deanship of Scientific Research, Taif University, Kingdom of Saudi Arabia (Grant No. 1-440-6136).

Corresponding Authors:  Ateyyah M Al-Baradi     E-mail:

Cite this article: 

Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass Structural and optical characteristic features of RF sputtered CdS/ZnO thin films 2020 Chin. Phys. B 29 080702

[1] Rajput J K and Purohit L P 2016 Nanosci. Technol. 3 1
[2] Nwanya A C, Deshmukh P R, Osujib R U, Maazad M, Lokhande C D and Ezema F I 2015 Sens. Actuat. B:Chem. 206 671
[3] McCool N S, Swierk J R, Nemes C T, Schmuttenmaer C A and Mallouk T E 2016 J. Phys. Chem. Lett. 7 2930
[4] Kuang W J, Li Q, Sun Y, Chen J and Tolner H 2016 Mater. Lett. 178 27
[5] Wang L, Wei H, Fan Y, Liu X and Zhan J 2009 Nanoscale Res. Lett. 4 558
[6] Sikarwar S, Yadav B C, Singh S, Dzhardimalieva G I, Pomogailo S I, Golubeva N D and Pomogailo A D 2016 Sensor Actuat. B:Chem. 232 283
[7] Xiong W 2016 Superlattice Microstruc. 98 158
[8] Vishwakarma A K and Yadava L 2018 Vacuum 155 214
[9] Fang F, Zhao D X, Li B H, Zhang Z Z, Zhang J Y and Shen D Z 2008 Appl. Phys. Lett. 93 233115
[10] Vasa P, Taneja P, Ayyub P, Singh B P and Banerjee R 2002 J. Phys.:Condens. Matter 14 281
[11] Wang X, Liu G, Lu G Q and Cheng H M 2010 Int. J. Hydrogen Energy 35 8199
[12] Sharma M and Jeevanandam P 2012 Mater. Res. Bull. 47 1755
[13] Kozhevnikova N S, Gyrdasova O I, Vorokh A S and Baklanova I V 2014 Nanosyst. Phys. Chem. Math. 5 579
[14] Velanganni S, Pravinraj S, Immanuel P and Thiruneelakandan R 2018 Physica B 534 56
[15] Meng X Q, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Fan X W and Wang X H 2007 Mater. Lett. 61 3535
[16] Rajeshwar K and de Tacconi N R 2001 Chem. Mater. 139 2765
[17] Alivisatos A P 1996 Science 271 933
[18] Anderson M A, Gorer S and Penner R M 1997 J. Phys. Chem. B 101 5895
[19] Caruso F 2001 Adv. Mater. 13 11
[20] Thambidurai M, Muthukumarasamy N, Arul N S, Agilan S and Balasundaraprabhu R 2011 J. Nanopart. Res. 13 3267
[21] Yang X, Yang Q, Hu Z, Guo S, Li Y, Sun J, Xu N and Wu J 2015 Sol. Energy Mater. Sol. Cells 137 169
[22] Nayak J, Sahu S N, Kasuya J and Nozaki S 2008 Appl. Surf. Sci. 254 7215
[23] Gao T, Li Q and Wang T 2005 Chem. Mater. 17 887
[24] Du N, Zhang H, Chen B, Wu J and Yang D 2007 Nanotechnology 18 115619
[25] Panda S K, Chakrabarti S, Satpati B, Satyam P V and Chaudhuri S 2004 J. Phys. D:Appl. Phys. 37 628
[26] Vasa P, Singh B P and Ayyub P 2005 J. Phys.:Condens. Matter 17 189
[27] Vanalakar S A, Mali S S, Suryawanshi M P, Tarwal N L, Jadhav P R, Agawane G L, Gurav K V, Kamble A S, Shin S W, Moholkar A V, Kim J Y, Kim J H and Patil P S 2014 Opt. Mater. 37 766
[28] Adegoke K A, Iqbal M, Louis H and Bello O S 2019 Mater. Sci. Energy Technol. 2 329
[29] El-Nahass M M 1992 J. Mater. Sci. 27 6597
[30] Di Giulio M, Micocci G, Rella R, Siciliano P and Tepore A 1993 Phys. Status Solidi A 136 K101
[31] El-Nahass M M, Atta A A, Abd El-Raheem M M and Hassanien A M 2014 J. Alloys Compd. 585 1
[32] Hassanien A M, Atta A A, El-Nahass M M, Ahmed S I, Shaltout A A, Al-Baradi A M, Alodhayb A and Kamal A M 2020 Opt. Quantum Electron. 52 194
[33] Konstantinov I, Babeva T and Kitova S 1998 Appl. Opt. 37 4260
[34] Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y and Ding J 2009 Powder Technol. 189 426
[35] Acharya A, Mishra R and Roy G S 2010 Lat. Am. J. Phys. Educ. 4 603
[36] Zandi S, Kameli P, Salamati H, Ahmadvand H and Hakimi M 2011 Physica B 406 3215
[37] Rawal S K, Chawla A K, Jayaganthan R and Chandra R 2014 Mater. Sci. Eng. B 181 16
[38] Dimova-Malinovska D, Nichev H and Angelov O 2008 Phys. Stat. Sol. (c) 5 3353
[39] Astinchapa B and Laelabadic K G 2019 J. Phys. Chem. Solids 129 217
[40] Beena D, Lethy K, Vinodkumar R, Pillai V M, Ganesan V, Phase D and Sudheer S 2009 Appl. Surf. Sci. 255 8334
[41] Goswami S and Sharma A K 2019 Appl. Surf. Sci. 495 143609
[42] Feneberg M, Nixdorf J, Lidig C, Goldhahn R, Galazka Z, Bierwagen O and Speck J S 2016 Phys. Rev. B 93 45203
[43] Ayyub P, Vasa P, Taneja P, Banerjee R and Singh B P 2005 J. Appl. Phys. 97 104310
[44] Vanalakar S A, Mali S S, Suryawanshi M P, et al. 2014 Opt. Mater. 37 766
[45] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
[46] Wemple S H 1973 Phys. Rev. B 7 3767
[47] Palik D E 1985 Handbook of Optical Constants of Solids (Academic Press) p. 265
[48] Miller R C 1964 Appl. Phys. Lett. 5 17
[49] Wang C C 1970 Phys. Rev. B 2 2045
[50] Tichý L, Tichá H, Nagels P, Callaerts R, Mertens R and Vlček M 1999 Mater. Lett. 39 122
[51] del Coso R and Solis J 2004 J. Opt. Soc. Am. B 21 640
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[5] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[6] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[7] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[8] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[9] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[12] Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells
H Noverola-Gamas, L M Gaggero-Sager, O Oubram. Chin. Phys. B, 2019, 28(12): 124207.
[13] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[14] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[15] Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared
Ning-Ning Wei(韦宁宁), Zhen Yang(杨振), Hong-Bo Pan(潘宏波), Fan Zhang(张凡), Yong-Xing Liu(刘永兴), Rong-Ping Wang(王荣平), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2018, 27(6): 067802.
No Suggested Reading articles found!