Special Issue:
SPECIAL TOPIC — Water at molecular level
|
SPECIAL TOPIC—Water at molecular level |
Prev
Next
|
|
|
Discontinuous transition between Zundel and Eigen for H5O2+ |
Endong Wang(王恩栋)1, Beien Zhu(朱倍恩)1,2, Yi Gao(高嶷)1,2 |
1 Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China |
|
|
Abstract The hydrated-proton structure is critical for understanding the proton transport in water. However, whether the hydrated proton adopts Zundel or Eigen structure in solution has been highly debated in the past several decades. Current experimental techniques cannot directly visualize the dynamic structures in situ, while the available theoretical results on the infrared (IR) spectrum derived from current configurational models cannot fully reproduce the experimental results and thus are unable to provide their precise structures. In this work, using H5O2+ as a model, we performed first-principles calculations to demonstrate that both the structural feature and the IR frequency of proton stretching, characteristics to discern the Zundel or Eigen structures, evolve discontinuously with the change of the O-O distance. A simple formula was introduced to discriminate the Zundel, Zundel-like, and Eigen-like structures. This work arouses new perspectives to understand the proton hydration in water.
|
Received: 22 April 2020
Revised: 11 May 2020
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
33.20.Ea
|
(Infrared spectra)
|
|
33.15.Bh
|
(General molecular conformation and symmetry; stereochemistry)
|
|
33.20.Tp
|
(Vibrational analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21773287). |
Corresponding Authors:
Yi Gao
E-mail: gaoyi@zjlab.org.cn
|
Cite this article:
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷) Discontinuous transition between Zundel and Eigen for H5O2+ 2020 Chin. Phys. B 29 083101
|
[1] |
Yuan W, Zhu B, Li X Y, Hansen T W, Ou Y, Fang K, Yang H, Zhang Z, Wagner J B, Gao Y and Wang Y 2020 Science 367 428
|
[2] |
Thämer M, De Marco L, Ramasesha K, Mandal A and Tokmakoff A 2015 Science 350 78
|
[3] |
Shin J W, Hammer N I, Diken E G, Johnson M A, Walters R S, Jaeger T D, Duncan M A, Christie R A and Jordan K D 2004 Science 304 1137
|
[4] |
Headrick J M, Diken E G, Walters R S, Hammer N I, Christie R A, Cui J, Myshakin E M, Duncan M A, Johnson M A and Jordan K D 2005 Science 308 1765
|
[5] |
Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801
|
[6] |
Gong Z Y, Duan S, Tian G, Jiang J, Xu X and Luo Y 2015 Phys. Chem. Chem. Phys. 17 12698
|
[7] |
Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
|
[8] |
Guo J, Meng X, Chen J, Peng J, Sheng J, Li X Z, Xu L, Shi J R, Wang E and Jiang Y 2014 Nat. Mater. 13 184
|
[9] |
Zhu B, Xu Z, Wang C and Gao Y 2016 Nano Lett. 16 2628
|
[10] |
Wan R, Li J, Lu H and Fang H 2005 J. Am. Chem. Soc. 127 7166
|
[11] |
Yang J, Fang H and Gao Y 2016 J. Phys. Chem. L 7 1788
|
[12] |
Feng Y, Wang Z, Guo J, Chen J, Wang E G, Jiang Y and Li X Z 2018 J. Chem. Phys. 148 102329
|
[13] |
Wang C, Zhou B, Tu Y, Duan M, Xiu P, Li J and Fang H 2012 Sci. Rep. 2 282
|
[14] |
Ren X P, Li L T and Wang C L 2013 Chin. Phys. B 22 16801
|
[15] |
Duan S, Tian G and Luo Y 2016 Angew. Chem. Int. Ed. 55 1041
|
[16] |
Hu J and Gao Y 2019 Acta Phys. Sin. 68 016803(in Chinese)
|
[17] |
Mallamace F, Corsaro C, Fazio E, Chen S H and Mallamace D 2019 Sci. Chin.-Phys. Mech. Astron. 62 107005
|
[18] |
Andreani C, Corsaro C, Mallamace D, Romanelli G, Senesi R and Mallamace F 2019 Sci. Chin.-Phys. Mech. Astron. 62 107008
|
[19] |
Zhovtobriukh I, Cabral B J C, Corsaro C, Mallamace D and Pettersson L G M 2019 Sci. Chin.-Phys. Mech. Astron. 62 107010
|
[20] |
Michele V D, Romanelli G and Cupane A 2019 Sci. Chin.-Phys. Mech. Astron. 62 107012
|
[21] |
Agmon N, Bakker H J, Campen R K, Henchman R H, Pohl P, Roke S, Thämer M and Hassanali A 2016 Chem. Rev. 116 7642
|
[22] |
Voth G A 2006 Acc. Chem. Res. 39 143
|
[23] |
Cao Z, Peng Y, Yan T, Li S, Li A and Voth G A 2010 J. Am. Chem. Soc. 132 11395
|
[24] |
Marx D, Tuckerman M E, Hutter J and Parrinello M 1999 Nature 397 601
|
[25] |
Muñoz-Santiburcio D, Wittekindt C and Marx D 2013 Nat. Commun. 4 2349
|
[26] |
Xu J, Jiang H, Shen Y, Li X Z, Wang E G and Meng S 2019 Nat. Commun. 10 3971
|
[27] |
Chen J, Li X Z, Zhang Q, Michaelides A and Wang E 2013 Phys. Chem. Chem. Phys. 15 6344
|
[28] |
Tyrode E, Sengupta S and Sthoer A 2020 Nat. Commun. 11 493
|
[29] |
Fournier J A, Carpenter W B, Lewis N H C and Tokmakoff A 2018 Nat. Chem. 10 932
|
[30] |
Dahms F, Fingerhut B P, Nibbering E T J, Pines E and Elsaesser T 2017 Science 357 491
|
[31] |
Schran C, Brieuc F and Marx D 2018 J. Chem. Theory Comput. 14 5068
|
[32] |
Fournier J A, Wolke C T, Johnson M A, Odbadrakh T T, Jordan K D, Kathmann S M and Xantheas S S 2015 J. Phys. Chem. A 119 9425
|
[33] |
Yu Q and Bowman J M 2016 J. Phys. Chem. L 7 5259
|
[34] |
Vener M V and Librovich N B 2009 Int. Rev. Phys. Chem. 28 407
|
[35] |
Agmon N 2016 Nat. Chem. 8 206
|
[36] |
Miliordos E, Aprá E and Xantheas S S 2013 J. Chem. Phys. 139 114302
|
[37] |
Xantheas S S and Dunning T H 1993 J. Chem. Phys. 99 8774
|
[38] |
Soper A K and Benmore C J 2008 Phys. Rev. Lett. 101 065502
|
[39] |
Lin I C, Seitsonen A P, Tavernelli I and Rothlisberger U 2012 J. Chem. Theory Comput. 8 3902
|
[40] |
Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G J and Wallingford G I 2009 Gaussian 09, Rev. D 01
|
[41] |
Neese F 2012 WIREs Comput. Mol. Sci. 2 73
|
[42] |
http://cccbdb.nist.gov/vibscalejust.asp
|
[43] |
Stoyanov E S, Stoyanova I V and Reed C A 2011 Chem. Sci. 2 462
|
[44] |
Hammer N I, Diken E G, Roscioli J R, Johnson M A, Myshakin E M, Jordan K D, McCoy A B, Huang X, Bowman J M and Carter S 2005 J. Chem. Phys. 122 244301
|
[45] |
Kulig W and Agmon N 2014 J. Phys. Chem. B 118 278
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|