Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 075204    DOI: 10.1088/1674-1056/ab8a3f
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material

Hong-Lu Guan(关弘路)1, Xiang-Rong Chen(陈向荣)1,2, Tie Jiang(江铁)1, Hao Du(杜浩)1, Ashish Paramane1, Hao Zhou(周浩)1
1 Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
Abstract  We present the variations of electrical parameters of dielectric barrier discharge (DBD) when the DBD generator is used for the material modification, whereas the relevant physical mechanism is also elaborated. An equivalent circuit model is applied for a DBD generator working in a filament discharging mode, considering the addition of epoxy resin (EP) as the plasma modified material. The electrical parameters are calculated through the circuit model. The surface conductivity, surface potential decay, trap distributions and surface charge distributions on the EP surface before and after plasma treatments were measured and calculated. It is found that the coverage area of micro-discharge channels on the EP surface is increased with the discharging time under the same applied AC voltage. The results indicate that the plasma modified material could influence the ignition of new filaments in return during the modification process. Moreover, the surface conductivity and density of shallow traps with low trap energy of the EP samples increase after the plasma treatment. The surface charge distributions indicate that the improved surface properties accelerate the movement and redistribution of charge carriers on the EP surface. The variable electrical parameters of discharge are attributed to the redistribution of deposited surface charge on the plasma modified EP sample surface.
Keywords:  dielectric barrier discharge      surface charge      plasma treatment      circuit model  
Received:  13 February 2020      Revised:  25 March 2020      Published:  05 July 2020
PACS:  52.77.-j (Plasma applications)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  68.55.aj (Insulators)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0904400), the National Natural Science Foundation of China (Grant No. 51977187), the “Science and Technology Innovation 2025” Key Project of Ningbo City, China (Grant No. 2018B10019), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY18E070003), the State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid (Grant No. SKLHVDC-2019-KF-18), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018QNA4017).
Corresponding Authors:  Xiang-Rong Chen     E-mail:  chenxiangrongxh@zju.edu.cn

Cite this article: 

Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩) Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material 2020 Chin. Phys. B 29 075204

[1] Shao T, Liu F, Hai B, Ma Y F, Wang R X and Ren C Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
[2] Li D, Liu D X, Nie Q Y, Li H P, Chen H L and Kong M G 2014 Appl. Phys. Lett. 104 204101
[3] Barni R, Esena P and Riccardi C 2005 J. Appl. Phys. 97 073301
[4] Jiang H, Shao T, Zhang C, Yan P and Liu H B 2018 IEEE Trans. Plasma Sci. 46 3524
[5] Liu S H and Neiger M 2003 J. Phys. D: Appl. Phys. 36 3144
[6] Wild R, Benduhn J and Stollenwerk L 2014 J. Phys. D: Appl. Phys. 47 435204
[7] Peeters F J J, Rumphorst R F and van de Sanden M C M 2016 Plasma Sources Sci. Technol. 25 03LT03
[8] Dou S, Tao L, Wang R L, Hankari S E, Chen R and Wang S Y 2018 Adv. Mater. 30 1705850
[9] Dimitrakellis P, Zeniou A, Stratakos Y and Gogolides E 2016 Plasma Sources Sci. Technol. 25 025015
[10] Qi F, Li Y Y, Zhou R S, Zhou R W, Wan J J, Xian Y B, Cullen P J, Lu X P and Ostrikov K K 2019 Appl. Phys. Lett. 115 194101
[11] Liu W Z, Ma C L, Cui W S, Yang X, Wang T H and Chen X Y 2017 Appl. Phys. Lett. 110 024102
[12] Guan H L, Chen X R, Du H, Paramane A and Zhou H 2019 J. Appl. Phys. 126 093301
[13] Tang J, Duan Y X and Zhao W 2010 Appl. Phys. Lett. 96 191503
[14] Zheng Y S, He J L, Zhang B, Zeng R and Yu Z Q 2011 IEEE Trans. Plasma Sci. 39 1644
[15] Zhou T C, Chen G, Liao R J and Xu Z Q 2011 J. Appl. Phys. 110 043724
[16] Kumara S, Ma B, Serdyuk Y V and Gubanski S M 2012 IEEE Trans. Dielectr. Electr. Insul. 19 2189
[17] Zhang B Y and Zhang G X 2017 J. Appl. Phys. 121 105105
[18] Li C Y, Lin C J, Chen G, Tu Y P, Zhou Y, Li Q, Zhang B and He J L 2019 Appl. Phys. Lett. 114 202904
[19] Tschiersch R, Nemschokmichal S, Bogaczyk M and Meichsner J 2017 J. Phys. D: Appl. Phys. 50 105207
[20] Li M, Li C R, Zhan H M, Xu J B and Wang X X 2008 Appl. Phys. Lett. 92 031503
[21] Choi J H, Lee T I, Han I, Oh B Y, Jeong M C, Myoung J M, Balk H K, Song K M and Lim Y S 2006 Appl. Phys. Lett. 89 081501
[1] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[2] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[3] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[4] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[5] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[6] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[7] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[8] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[9] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[10] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[11] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[12] An optimized fitting function with least square approximation inInAs/AlSb HFET small-signal model for characterizingthe frequency dependency of impact ionization effect
He Guan(关赫), Hui Guo(郭辉). Chin. Phys. B, 2017, 26(5): 058501.
[13] Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact
Fang Liu(刘芳), Zhixin Qin(秦志新). Chin. Phys. B, 2016, 25(11): 117304.
[14] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen, Xu Tian-Hong, Wan Wen-Jian, Zhu Yong-Hao, Cao Jun-Cheng. Chin. Phys. B, 2015, 24(9): 094208.
[15] Surface-charge-governed electrolyte transport in carbon nanotubes
Xue Jian-Ming, Guo Peng, Sheng Qian. Chin. Phys. B, 2015, 24(8): 086601.
No Suggested Reading articles found!