Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064208    DOI: 10.1088/1674-1056/ab8625

Simple and robust method for rapid cooling of 87Rb to quantum degeneracy

Chun-Hua Wei(魏春华)1,2, Shu-Hua Yan(颜树华)3
1 State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
3 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
Abstract  We demonstrate a simple and fast way to produce 87Rb Bose-Einstein condensates. A digital optical phase lock loop (OPLL) board is introduced to lock and adjust the frequency of the trap laser, which simplifies the optical design and improves the experimental efficiency. We collect atoms in a magneto-optical trap, then compress the cloud and cut off hot atoms by rf knife in a magnetic quadrupole trap. The atom clouds are then transferred into a spatially mode-matched optical dipole trap by lowering the quadrupole field gradient. Our system reliably produces a condensate with 2×106 atoms every 7.5 s. The compact optical design and rapid preparation speed of our system will open the gate for mobile quantum sensing.
Keywords:  optical phase lock loop      laser cooling      Bose-Einstein condensates  
Received:  07 February 2020      Revised:  16 March 2020      Published:  05 June 2020
PACS:  42.50.-p (Quantum optics)  
  07.05.Fb (Design of experiments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51275523) and the State Key Laboratory of Aerodynamics Research Fund, China (Grant No. SKLA2019040302).
Corresponding Authors:  Chun-Hua Wei     E-mail:

Cite this article: 

Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华) Simple and robust method for rapid cooling of 87Rb to quantum degeneracy 2020 Chin. Phys. B 29 064208

[1] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[2] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clement D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
[3] Scherer M, Lucke B, Gebreyesus G, Topic O, Deuretzbacher F, Ertmer W, Santos L, Arlt J J and Klempt C 2010 Phys. Rev. Lett. 105 135302
[4] Shao S Q, Zhou K Z and Zhang Z D 2019 Chin. Phys. B 28 070501
[5] Canuel B, Leduc F, Holleville D, et al. 2006 Phys. Rev. Lett. 97 010402
[6] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[7] Zoest T, Gaaloul N and Singh Y et al. 2010 Science 328 1540
[8] Bouyer P and Kasevich M A 1997 Phys. Rev. A 56 R1083
[9] Gross C, Zibold T, Nicklas E, Estéve J and Oberthaler M K 2010 Nature 464 1165
[10] Gattobigio G L, Couvert A, Reinaudi G, et al. 2012 Phys. Rev. Lett. 109 030403
[11] Houde O, Kadio D and Pruvost L 2000 Phys. Rev. Lett. 85 5543
[12] Marti G E, Olf R and Stamper-Kurn D M 2015 Phys. Rev. A 91 013602
[13] Altin P A, McDonald G, Döring D, et al. 2011 New. J. Phys. 13 119401
[14] Hardman K S, Everitt P J, McDonald G D, et al. 2016 Phys. Rev. Lett. 117 138501
[15] Wei C, Yan S, Jia A, et al. 2016 Chin. Opt. Lett. 14 051403
[16] Wigley P B, Everitt P J, Hardman K S, et al. 2016 Opt. Lett. 41 4795
[1] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[2] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[3] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[4] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹), Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[5] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[6] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[7] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[8] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[9] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[10] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[11] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[12] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[13] Tuning the velocity and flux of a low-velocity intense source of cold atomic beam
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2017, 26(11): 113703.
[14] Energy sharing induced by the nonlinear interaction
Yuan Liu(刘渊), Zhifang Feng(冯志芳), Weidong Li(李卫东). Chin. Phys. B, 2017, 26(1): 013401.
[15] Generating periodic interference in Bose-Einstein condensates
Shen-Tong Ji(冀慎统), Yuan-Sheng Wang(王元生), Yue-E Luo(罗月娥), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(9): 090303.
No Suggested Reading articles found!