Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064209    DOI: 10.1088/1674-1056/ab84d6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation

Wen-Xiang Xue(薛文祥)1,2,3, Wen-Yu Zhao(赵文宇)1,2, Hong-Lei Quan(全洪雷)1,2,3, Cui-Chen Zhao(赵粹臣)1,2,3, Yan Xing(邢燕)1,2, Hai-Feng Jiang(姜海峰)1,2, Shou-Gang Zhang(张首刚)1,2
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, Xi'an 710600, China;
3 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system. The key element of the system is the low noise frequency divider by 4 to differentiate the frequency of the forward signal from that of the backward one, thus suppressing the effect of Brillouin backscattering and parasitic reflection along the link. In terms of overlapping Allan deviation, the frequency transfer instability of 4.2×10-15 at 1-s integration time and 1.6×10-18 at one-day integration time was achieved. In addition, its sensitivity to the polarization mode dispersion in fiber is analyzed by comparing the results with and without laser polarization scrambling. Generally, with simplicity and robustness, the system can offer great potentials in constructing cascaded frequency transfer system and facilitate the building of fiber-based microwave transfer network.

Keywords:  microwave frequency transfer      phase compensation      polarization mode dispersion  
Received:  03 February 2020      Revised:  09 March 2020      Accepted manuscript online: 
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  06.30.Ft (Time and frequency)  
  42.81.Uv (Fiber networks)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61825505, 91536217, and 61127901).

Corresponding Authors:  Shou-Gang Zhang     E-mail:  szhang@ntsc.ac.cn

Cite this article: 

Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚) Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation 2020 Chin. Phys. B 29 064209

[1] Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R X, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391
[2] Lipphardt B, Gerginov V and Weyers S 2017 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64 761
[3] Bauch A, Achkar J, Bize S, Calonico D, Dach R, Hlavać R, Lorini L, Parker T, Petit G, Piester D, Szymaniec K and Uhrich P 2006 Metrologia 43 109
[4] Ma L S, Jungner P, Ye J and Hall J L 1994 Opt. Lett. 19 1777
[5] Jiang H F, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A and Santarelli G 2008 J. Opt. Soc. Am. B 25 2029
[6] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T and Zhang S G 2016 Chin. Phys. Lett. 33 114202
[7] Marra G, Slavík R, Margolis H S, Lea S N, Petropoulos P, Richardson D J and Gill P 2011 Opt. Lett. 36 511
[8] Jung K, Shin J, Kang J, Hunziker S, Min C K and Kim J 2014 Opt. Lett. 39 1577
[9] Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F, Lours M and Santarelli G 2008 Eur. Phys. J. D 48 35
[10] Lopez O, Amy-Klein A, Lours M, Chardonnet C and Santarelli G 2010 Appl. Phys. B 98 723
[11] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C and Wang L J 2012 Sci. Rep. 2 556
[12] Jiang H F 2010 Development of ultra-stable laser sources and long-distance optical link via telecommunication networks, Ph. D. Dissertation (Paris: Université Paris 13)
[13] Shen P, Gomes N J, Shillue W P and AlBanna S 2008 J. Lightwave Technol. 26 2754
[14] Allan D W 1975 The Measurement of Frequency and Frequency Stability of Precision Oscillators (Washington: Nat. Bur. Stand., Tech. Note 669) p. 14
[15] Newbury N R, Williams P A and Swann W C 2007 Opt. Lett. 32 3056
[16] Narbonneau F, Lours M, Bize S, Clairon A, Santarelli G, Lopez O, Daussy Ch, Amy-Klein A and Chardonnet C 2006 Rev. Sci. Instrum. 77 064701
[17] Eliyahu D, Seidel D and Maleki L 2008 IEEE Trans. Microwave Theory Tech. 56 449
[18] Cibiel G, Régis M, Tournier E and Llopis O 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 784
[19] Nelson L M, Walls F L 1992 Proceedings of the 46th IEEE Frequency Control Symp., May 27-29, 1992, Hershey, p. 831
[20] Schiano M 2004 J. Opt. Fiber. Commun. Rep. 1 235
[21] Breuer D, Tessmann H J, Gladisch A, Foisel H M, Neumann G, Reiner H and Cremer H 2003 Proceedings of the Dig. LEOS Summer Top. Meetings, July 14-16, 2003, Vancouver, p. MB2.1/5-MB2.1/6
[1] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[2] 19-fs pulse generated by supercontinuum compression
Hua-Qiang Zhang(张华强), Peng Wang(王鹏), Wen-Jun Liu(刘文军), Yi-Lei Yao(姚翳蕾), Zhi-Jing Xu(徐志敬), Jian Li(李健). Chin. Phys. B, 2016, 25(2): 024209.
[3] High-speed polarization mode dispersion compensation in a 43-Gb/s RZ-DQPSK transmission system over 1200 km of standard single-mode fibre
Tian Feng(田凤), Zhang Xiao-Guang(张晓光), Weng Xuan(翁轩), [mm]Xi Li-Xia(席丽霞), Zhang Yang-An(张阳安), and Zhang Wen-Bo(张文博) . Chin. Phys. B, 2011, 20(8): 080702.
[4] Polarization mode dispersion compensation in a novel dual polarization differential quadrature phase shift keying system
Qin Jiang-Xing(秦江星), Xi Li-Xia(席丽霞), Zhang Xiao-Guang(张晓光), and Tian Feng(田凤) . Chin. Phys. B, 2011, 20(11): 114201.
[5] Propagation properties of an index guiding high birefringence fibre
Lou Shu-Qin (娄淑琴), Wang Zhi (王智), Ren Guo-Bin (任国斌), Jian Shui-Sheng (简水生). Chin. Phys. B, 2004, 13(9): 1493-1499.
[6] General demonstration of principal states of polarization and real-time monitoring of polarization mode dispersion in optical fibres
Dong Hui (董晖), Wu Chong-Qing (吴重庆), Fu Song-Nian (付松年). Chin. Phys. B, 2004, 13(8): 1291-1295.
[7] Calculation of geometrical birefringence from two-dimensional refractive-index profile in single-mode fibres
Dong Hui (董晖), Wu Chong-Qing (吴重庆), Fu Song-Nian (付松年). Chin. Phys. B, 2004, 13(12): 2082-2086.
[8] A modified split-step Fourier method for optical pulse propagation with polarization mode dispersion
Rao Min (饶敏), Sun Xiao-Han (孙小菡), Zhang Ming-De (张明德). Chin. Phys. B, 2003, 12(5): 502-506.
[9] Study of the stability of polarization mode dispersion in fibre
Fu Song-Nian (付松年), Wu Chong-Qing (吴重庆), Liu Hai-Tao (刘海涛), Shum Ping (沈平), Dong Hui (董晖). Chin. Phys. B, 2003, 12(12): 1423-1428.
No Suggested Reading articles found!