ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell |
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才) |
Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China |
|
|
Abstract Inhibiting the radiative radiation is an efficient approach to enhance quantum yields in a solar sell. This work carries out the inhibition of radiative recombination rate (RRR) in a quantum photocell with two coupled donors. We perform explicit calculations of the transition rates, energy gaps and the absorbed solar wavelength-dependent RRR, and find that two different regimes play the crucial roles in inhibiting RRR. One is the quantum coherence generated from two different transition channels, the other includes the absorbed photon wavelength and gaps between the donor and acceptor in this proposed photocell model. The results imply that there may be some efficient ways to enhance the photoelectron conversion compared to the classic solar cell.
|
Received: 29 December 2019
Revised: 24 February 2020
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61565008 and 61205205) and the General Program of Yunnan Applied Basic Research Project, China (Grant No. 2016FB009). |
Corresponding Authors:
Shun-Cai Zhao
E-mail: zhaosc@kust.edu.cn
|
Cite this article:
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才) Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell 2020 Chin. Phys. B 29 064207
|
[1] |
Würfel P 2016 Physics of solar cells: from basic principles to advanced concepts 3rd edn (Birlin: Wiley-VCH)
|
[2] |
Huang H B, Tian G Y, Zhou L, Yuan J R, Fahrner W R, Zhang W B, Li X B, Chen W H and Liu R Z 2018 Chin. Phys. B 27 038502
|
[3] |
Du H J, Wang W C and Gu Y F 2017 Chin. Phys. B 26 028803
|
[4] |
Chen W B, Xu Z X, Li K, Chui S S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
|
[5] |
Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
|
[6] |
Henry C H and Henry C H 1980 J. Appl. Phys. 51 4494
|
[7] |
Li J M, Chong M, Zhu J C, Li Y J, Xu J D, Wang P D, Shang Z Q, Yang Z K, Zhu R H and Cao X L 1992 Appl. Phys. Lett. 60 2240
|
[8] |
Bruns J, Seifert W, Wawer P, Winnicke H, Braunig D and Wagemann H G 1994 Appl. Phys. Lett. 64 2700
|
[9] |
Luque A and Mart A 1997 Phys. Rev. Lett. 78 5014
|
[10] |
Kasai H and Matsumura H 1997 Sol. Energy Mater. Sol. Cells 48 93
|
[11] |
Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A and Yamanaka R 2005 Appl. Phys. Lett. 86 213501
|
[12] |
Engel G S, Calhoun T R, Read E L, Tae-Kyu A, Tomäs M, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782
|
[13] |
Mukti R J, Hossain M R, Islam A, Mekhilef S and Horan B 2019 Energies 12 2602
|
[14] |
Guo P F, Ye Q, Yang X K, Zhang J and Wang H Q 2019 J. Mater. Chem. A 7 2497
|
[15] |
Scully M O 2010 Phys. Rev. Lett. 104 207701
|
[16] |
Scully M O, Chapin K R, Dorfman K E, Moochan B K and Anatoly S 2011 Proc. Natl. Acad. Sci. USA 108 15097
|
[17] |
Svidzinsky A A, Dorfman K E and Scully M O 2011 Phys. Rev. A 84 053818
|
[18] |
Kühn O and Lochbrunner S 2011 Semiconductors and Semimetals 85 47
|
[19] |
Killoran N, Huelga S F and Plenio M B 2015 J. Chem. Phys. 143 155102
|
[20] |
Yao Y 2015 Phys. Rev. B 91 045421
|
[21] |
Zhang Y T, Sangchul O, Alharbi F H, Engel G S and Sabre K 2015 Phys. Chem. Chem. Phys. 17 5743
|
[22] |
Sangchul O 2017 arXiv:1709.08337
|
[23] |
Daryani M, Rostami A, Darvish G and Farshi M K M 2017 Opt. Quantum Electron. 49 255
|
[24] |
Zhao S C and Chen J Y 2019 New J. Phys. 21 103015
|
[25] |
Zhao S C and Wu Q X 2020 Superlattices Microstruct. 137 106329
|
[26] |
Handy R J 1967 Solid State Electron. 10 765
|
[27] |
Saǧlam M, Ayyildiz E, Gümüs A, Türüt A, Efeoǧlu H and Tüzemen S 1996 Appl. Phys. A 62 269
|
[28] |
Kar G S, Maikap S, Banerjee S K and Ray S K 2002 Semicond. Sci. Technol. 17 938
|
[29] |
Kajiyama Y, Joseph K, Kajiyama K, Kudo S and Aziz H 2012 Sid Symp. Dig. Tech. Papers 43 1544
|
[30] |
Luque A, Mellor A, Ramiro I, Antoln E, Tobas I and Mart A 2013 Sol. Energy Mater. Sol. Cells 115 138
|
[31] |
Tian L and Dagenais M 2015 Appl. Phys. Lett. 106 171101
|
[32] |
Kum H, Dai Y S, Aihara T, Slocum M A, Tayagaki T, Fedorenko A, Polly S J, Bittner Z, Sugaya T and Hubbard S M 2018 Appl. Phys. Lett. 113 043902
|
[33] |
Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 2329
|
[34] |
Conibeer G, Patterson R, Huang L M, Guillemoles J F, Konig D, Shrestha S and Green M A 2010 Sol. Energy Mater. Sol. Cells 94 1516
|
[35] |
Hirst L, Führer M, Farrell D J et al. 2011 37th IEEE Photovoltaic Specialists Conference (Seattle, WA) p. 003302
|
[36] |
Conibeer G, Shrestha S, Huang S J, Patterson R, Aliberti P, Xia H, Feng Y, Gupta N, Smyth S and Liao Y 2012 38th IEEE Photovoltaic Specialists Conference (Austin, TX) p. 000032
|
[37] |
Graziani F R 2004 J. Quant. Spectrosc. Radiat. Transfer 83 711
|
[38] |
Yi Y, Massuda A, Roques-Carmes C, Kooi S E, Christensen T, Johnson S G, Joannopoulos J D, Miller O D, Kaminer I and Soljai M 2018 Nat. Phys. 14 67
|
[39] |
Würfel P 2007 CHIMIA Int. J. Chem. 61 770
|
[40] |
Creatore C, Parker M A, Emmott S and Chin A W 2013 Phys. Rev. Lett. 111 253601
|
[41] |
Abramavicius D, Benoit P and Shaul M 2009 Chem. Phys. 357 79
|
[42] |
Dorfman K E, Voronine D V, Shaul M and Scully M O 2013 Proc. Natl. Acad. Sci. USA 110 2746
|
[43] |
Dorfman K E, Svidzinsky A A and Scully M O 2013 Coherent Opt. Phenom. 1 42
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|