Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038102    DOI: 10.1088/1674-1056/ab6c4a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films

Ailing Chang(常爱玲)1, Yichen Mao(毛亦琛)1, Zhiwei Huang(黄志伟)2, Haiyang Hong(洪海洋)1, Jianfang Xu(徐剑芳)1, Wei Huang(黄巍)1, Songyan Chen(陈松岩)1, Cheng Li(李成)1
1 Department of Physics, OSED, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China;
2 Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
Abstract  Hafnium disulfide (HfS2) is a promising two-dimensional material for scaling electronic devices due to its higher carrier mobility, in which the combination of two-dimensional materials with traditional semiconductors in the framework of CMOS-compatible technology is necessary. We reported on the deposition of HfS2 nanocrystals by remote plasma enhanced atomic layer deposition at low temperature using Hf(N(CH3)(C2H5))4 and H2S as the reaction precursors. Self-limiting reaction behavior was observed at the deposition temperatures ranging from 150℃ to 350℃, and the film thickness increased linearly with the growth cycles. The uniform HfS2 nanocrystal thin films were obtained with the size of nanocrystal grain up to 27 nm. It was demonstrated that higher deposition temperature could enlarge the grain size and improve the HfS2 crystallinity, while causing crystallization of the mixed HfO2 above 450℃. These results suggested that atomic layer deposition is a low-temperature route to synthesize high quality HfS2 nanocrystals for electronic device or electrochemical applications.
Keywords:  HfS2      atomic layer deposition      surface morphology  
Received:  10 December 2019      Revised:  09 January 2020      Published:  05 March 2020
PACS:  81.07.Bc (Nanocrystalline materials)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200103).
Corresponding Authors:  Cheng Li     E-mail:  lich@xmu.edu.cn

Cite this article: 

Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成) Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films 2020 Chin. Phys. B 29 038102

[1] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[4] Choi W, Choudhary N, Han G H, Park J, Akinwande D and Lee Y H 2017 Mater. Today 20 116
[5] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
[6] Kanazawa T, Amemiya T, Ishikawa A, Upadhyaya V, Tsuruta K, Tanaka T and Miyamoto Y 2016 Sci. Rep. 6 22277
[7] Mirabelli G, McGeough C, Schmidt M, McCarthy E K, Monaghan S, Povey I M, McCarthy M, Gity F, Nagle R, Hughes G, Cafolla A, Hurley P K and Duffy R 2016 J. Appl. Phys. 120 125102
[8] Chae S H, Jin Y, Kim T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H and Lee Y H 2016 ACS Nano 10 1309
[9] Wang D, Zhang X and Wang Z 2018 J. Nanosci. Nanotechnol. 18 7319
[10] Yan C, Gan L, Zhou X, Guo J, Huang W, Huang J, Jin B, Xiong J, Zhai T and Li Y 2017 Adv. Funct. Mater. 27 1702918
[11] Wang D, Zhang X, Liu H, Meng J, Xia J, Yin Z, Wang Y, You J and Meng X M 2017 2D Mater. 4 031012
[12] Fu L, Wang F, Wu B, Wu N, Huang W, Wang H, Jin C, Zhuang L, He J, Fu L and Liu Y 2017 Adv. Mater. 29 1700439
[13] Kaur H, Yadav S, Srivastava A K, Singh N, Rath S, Schneider J J, Sinha O P and Srivastava R 2018 Nano Res. 11 343
[14] Zheng B, Chen Y, Wang Z, Qi F, Huang Z, Hao X, Li P, Zhang W and Li Y 2016 2D Mater. 3 035024
[15] Wang D, Meng J, Zhang X, Guo G, Yin Z, Liu H, Cheng L, Gao M, You J and Wang R 2018 Chem. Mater. 30 3819
[16] Zheng B, Wang Z, Qi F, Wang X, Yu B, Zhang W and Chen Y 2018 Appl. Surf. Sci. 435 563
[17] Brooks D J, Douthwaite R E, Brydson R, Calvert C, Measures M G and Watson A 2006 Nanotechnology 17 1245
[18] Oh S, Kim J B, Song J T, Oh J and Kim S H 2017 J. Mater. Chem. A 5 3304
[19] Huang Y, Liu L and Liu X 2019 Nanotechnology 30 95402
[20] Nandi D K, Sen U K, Choudhury D, Mitra S and Sarkar S K 2014 Electrochim. Acta 146 706
[21] Jin Z, Shin S, Kwon D H, Han S J and Min Y S 2014 Nanoscale 6 14453
[22] Kwon D H, Jin Z, Shin S, Lee W S and Min Y S 2016 Nanoscale 8 7180
[23] Xiong D, Zhang Q, Li W, Li J, Fu X, Cerqueira M F, Alpuim P and Liu L 2017 Nanoscale 9 2711
[24] Kim H J, Jeon H and Shin Y H 2018 J. Appl. Phys. 124 115301
[25] Shimizu J, Ohashi T, Matsuura K, Muneta I, Kuniyuki K, Tsutsui K, Ikarashi N and Wakabayashi H 2019 IEEE J. Electron. Devices Soc. 7 76
[26] Hao W, Marichy C and Journet C 2019 2D Mater. 6 012001
[27] Groven B, Mehta A N, Bender H, Smets Q, Meersschaut J, Franquet A, Conard T, Nuytten T, Verdonck P, Vandervorst W, Heyns M, Radu I, Caymax M and Delabie A 2018 J. Vac. Sci. Technol. A Vac. Surf. Film 36 01A105
[28] Wu Y, Raza M H, Chen Y C, Amsalem P, Wahl S, Skrodczky K, Xu X, Lokare K S, Zhukush M, Gaval P, Koch N, Quadrelli E A and Pinna N 2019 Chem. Mater. 31 1881
[29] Yeo S, Nandi D K, Rahul R, Kim T H, Shong B, Jang Y, Bae J S, Han J W, Kim S H and Kim H 2018 Appl. Surf. Sci. 459 596
[30] Pyeon J J, Baek I H, Lim W C, Chae K H, Han S H, Lee G Y, Baek S H, Kim J S, Choi J W, Chung T M, Han J H, Kang C Y and Kim S K 2018 Nanoscale 10 17712
[31] Lee N, Lee G, Choi H, Park H, Choi Y, Kim K, Choi Y, Kim J W, Yuk H, Sul O, Lee S B and Jeon H 2019 Appl. Surf. Sci. 496 143689
[32] Lv J and Liu L 2020 Nanotechnology 31 055602
[33] Hämäläinen J, Mattinen M, Mizohata K, Meinander K, Vehkamäki M, Räisänen J, Ritala M and Leskelä M 2018 Adv. Mater. 30 1703622
[34] Mattinen M, Popov G, Vehkamäki M, King P J, Mizohata K, Jalkanen P, Räisänen J, Leskelä M and Ritala M 2019 Chem. Mater. 31 5713
[35] Chi X, Lan X, Lu C, Hong H, Li C, Chen S, Lai H, Huang W and Xu J 2016 Mater. Res. Express 3 035012
[1] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[2] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[3] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
[4] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[5] Influences of different oxidants on characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(6): 067701.
[6] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
[7] Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer
Lei Zhang(张蕾), Changchun Hao(郝长春), Ying Feng(冯盈), Feng Gao(高峰), Xiaolong Lu(逯晓龙), Junhua Li(李俊花), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090507.
[8] Influences of different structures on the characteristics of H2O-based and O3-based LaxAlyO films deposited by atomic layer deposition
Chen-Xi Fei(费晨曦), Hong-Xia Liu(刘红侠), Xing Wang(汪星), Dong-Dong Zhao(赵冬冬), Shu-Long Wang(王树龙), Shu-Peng Chen(陈树鹏). Chin. Phys. B, 2016, 25(5): 058106.
[9] Growth mechanism of atomic-layer-deposited TiAlC metal gatebased on TiCl4 and TMA precursors
Jinjuan Xiang(项金娟), Yuqiang Ding(丁玉强), Liyong Du(杜立永), Junfeng Li(李俊峰),Wenwu Wang(王文武), Chao Zhao(赵超). Chin. Phys. B, 2016, 25(3): 037308.
[10] Influences of annealing on structural and compositional properties of Al2O3 thin films grown on 4H-SiC by atomic layer deposition
Li-Xin Tian(田丽欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2016, 25(12): 128104.
[11] Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics
Li-Fan Wu(武利翻), Yu-Ming Zhang(张玉明), Hong-Liang Lv(吕红亮), Yi-Men Zhang(张义门). Chin. Phys. B, 2016, 25(10): 108101.
[12] Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots
Alireza Samavati, Z. Othaman, S. K. Ghoshal, M. K. Mustafa. Chin. Phys. B, 2015, 24(2): 028103.
[13] Effect of additional silicon on titanium/4H-SiC contacts properties
Zhang Yong-Ping, Chen Zhi-Zhan, Lu Wu-Yue, Tan Jia-Hui, Cheng Yue, Shi Wang-Zhou. Chin. Phys. B, 2014, 23(5): 057303.
[14] Microstructure and its influence on CH4 adsorption behavior of deep coal
Feng Yan-Yan, Jiang Cheng-Fa, Liu Dai-Jun, Chu Wei. Chin. Phys. B, 2014, 23(2): 028201.
[15] AlOx prepared by atomic layer deposition for high efficiency-type crystalline silicon solar cell
Qiu Hong-Bo, Li Hui-Qi, Liu Bang-Wu, Zhang Xiang, Shen Ze-Nan. Chin. Phys. B, 2014, 23(2): 027301.
No Suggested Reading articles found!