Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026401    DOI: 10.1088/1674-1056/ab6203

Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys

Weijie Li(李伟节)1,2, Chongyu Wang(王崇愚)1
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The doping effects on the stacking fault energies (SFEs), including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault, were studied by first principles calculation of the γ' phase in the Ni-based superalloys. The formation energy results show that the main alloying elements in Ni-based superalloys, such as Re, Cr, Mo, Ta, and W, prefer to occupy the Al-site in Ni3Al, Co shows a weak tendency to occupy the Ni-site, and Ru shows a weak tendency to occupy the Al-site. The SFE results show that Co and Ru could decrease the SFEs when added to fault planes, while other main elements increase SFEs. The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements (except Co) occupy an Al-site. Furthermore, the SFEs show a symmetrical distribution with the location of the elements in the ternary model. A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.
Keywords:  stacking fault energy      site preference      Ni-based superalloys      electronic structure  
Received:  07 June 2019      Revised:  13 December 2019      Published:  05 February 2020
PACS:  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  61.72.S- (Impurities in crystals)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701502).
Corresponding Authors:  Chongyu Wang     E-mail:

Cite this article: 

Weijie Li(李伟节), Chongyu Wang(王崇愚) Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys 2020 Chin. Phys. B 29 026401

[1] Reed R C 2008 The superalloys: fundamentals and applications (Cambridge: Cambridge University Press)
[2] Yokokawa T, Harada H, Mori Y, Kawagishi K, Koizumi Y, Kobayashi T, Yuyama M and Suzuki S 2016 Proceedings of the 13th Intenational Symposium of Superalloys, pp. 123-130
[3] Yu X X and Wang C Y 2012 Mater. Sci. Eng. A 539 38
[4] Rao Y, Smith T M, Mills M J and Ghazisaeidi M 2018 Acta Mater. 148 173
[5] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[6] Zhang W, Lin J, Xu W, Fu H and Yang G 2017 Tsinghua Sci. Technol. 22 675
[7] Blöchl P E 1994 Phys. Rev. B 50 17953
[8] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[9] Wagner C and Schottky W J Z 1930 Phys. Chem. B 11 171
[10] Ruban A V and Skriver H L 1997 Phys. Rev. B 55 856
[11] Jiang C and Gleeson B 2006 Scr. Mater. 55 433
[12] Liu S H, Wen M R, Li Z, Liu W Q, Yan P and Wang C Y 2017 Mater. & Des. 130 157
[13] Wen M and Wang C 2018 Phys. Rev. B 97 024101
[14] Eurich N and Bristowe P 2015 Scr. Mater. 102 87
[15] Voskoboinikov R 2013 Phys. Met. Metallogr. 114 545
[16] Suzuki H 1962 J. Phys. Soc. Jpn. 17 322
[17] Suzuki A, Inui H and Pollock T M 2015 Ann. Rev. Mater. Res. 45 345
[18] Titus M S, Eggeler Y M, Suzuki A and Pollock T M 2015 Acta Mater. 82 530
[19] Nakashima P N H, Smith A E, Etheridge J and Muddle B C 2011 Science 331 1583
[20] Kioussis N, Herbranson M, Collins E and Eberhart M E 2002 Phys. Rev. Lett. 88 125501
[21] Wang C Y, Liu S Y and Han L G 1990 Phys. Rev. B 41 1359
[22] Wang C, Yue Y and Liu S 1990 Phys. Rev. B 41 6591
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[5] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[6] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[9] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[10] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[11] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[12] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[13] Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film
Xue-Fu Zhang(张学富), Zhong-Hao Liu(刘中灏), Wan-Ling Liu(刘万领), Xiang-Le Lu(卢祥乐), Zhuo-Jun Li(李卓君), Qing-Kai Yu(于庆凯), Da-Wei Shen(沈大伟), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2019, 28(8): 086103.
[14] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[15] Electronic structure from equivalent differential equations of Hartree-Fock equations
Hai Lin(林海). Chin. Phys. B, 2019, 28(8): 087101.
No Suggested Reading articles found!