Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104702    DOI: 10.1088/1674-1056/ab3f27
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device

Liang-Yu Wu(吴梁玉)1, Ling-Bo Liu(刘凌波)1, Xiao-Tian Han(韩笑天)1, Qian-Wen Li(李倩文)2, Wei-Bo Yang(杨卫波)1
1 School of Hydraulic, Energy, and Power Engineering, Yangzhou University, Yangzhou 225127, China;
2 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Abstract  Based on the volume of fluid (VOF) method, a numerical model of bubbles splitting in a microfluidic device with T-junction is developed and solved numerically. Various flow patterns are distinguished and the effects of bubble length, capillary number, and diameter ratio between the mother channel and branch are discussed. The break-up mechanism is explored in particular. The results indicate that the behaviors of the bubbles can be classified into two categories:break-up and non-break. Under the condition of slug flowing, the branches are obstructed by the bubbles that the pressure difference drives the bubbles into break-up state, while the bubbles that retain non-break state flow into an arbitrary branch under bubbling flow condition. The break-up of the short bubbles only occurs when the viscous force from the continuous phase overcomes the interfacial tension. The behavior of the bubbles transits from non-break to break-up with the increase of capillary number. In addition, the increasing of the diameter ratio is beneficial to the symmetrical break-up of the bubbles.
Keywords:  microfluidic      T-junction      bubble break-up      numerical simulation     
Received:  10 May 2019      Published:  05 October 2019
PACS:  47.55.D- (Drops and bubbles)  
  47.55.dr (Interactions with surfaces)  
  68.03.Cd (Surface tension and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51706194 and 51876184).
Corresponding Authors:  Wei-Bo Yang     E-mail:  wbyang@yzu.edu.cn

Cite this article: 

Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波) Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device 2019 Chin. Phys. B 28 104702

[41] Li J, Renardy Y Y and Renardy M 2000 Phys. Fluids 12 269
[1] Halpern D, Jensen O and Grotberg J 1998 J. Appl. Physiol. 85 333
[42] Brackbill J U, Kothe D B and Zemach C 1992 J. Comput. Phys. 100 335
[2] Wang H, Zhao Z, Liu Y, Shao C, Bian F and Zhao Y 2018 Sci. Adv. 4 eaat2816
[3] Liu M, Su L, Li J, Chen S, Liu Y, Li J, Li B, Chen Y and Zhang Z 2016 Matter Radiat. Extremes 1 213
[4] Chen Y, Liu X and Shi M 2013 Appl. Phys. Lett. 102 051609
[5] Zhang C B, Gao W, Zhao Y J and Chen Y P 2018 Appl. Phys. Lett. 113 203702
[6] Fu T, Ma Y, Funfschilling D and Li H Z 2011 Chem. Eng. Sci. 66 4184
[7] Zhang C B, Yu F W, Li X J and Chen Y P 2019 AIChE J. 65 1119
[8] Kreutzer M T, Kapteijn F, Moulijn J A and Heiszwolf J J 2005 Chem. Eng. Sci. 60 5895
[9] Shin S, Shardt O, Warren P B and Stone H A 2017 Nat. Commun. 8 15181
[10] Park M K, Jun S, Kim I, Jin S M, Kim J G, Shin T J and Lee E 2015 Adv. Funct. Mater. 25 4570
[11] Lee T Y, Ku M, Kim B, Lee S, Yang J and Kim S H 2017 Small 13 1700646
[12] Günther A and Jensen K F 2006 Lab Chip 6 1487
[13] Glawdel T, Elbuken C and Ren C L 2012 Phys. Rev. E 85 016323
[14] Leshansky A, Afkhami S, Jullien M C and Tabeling P 2012 Phys. Rev. Lett. 108 264502
[15] Taylor G I 1932 Proc. R. Soc. A 138 41
[16] Chen Y P, Gao W, Zhang C B and Zhao Y J 2016 Lab Chip 16 1332
[17] Liu X, Chen Y and Shi M 2013 Int. J. Therm. Sci. 65 224
[18] Ma R, Fu T, Zhang Q, Zhu C, Ma Y and Li H Z 2017 J. Ind. Eng. Chem. 54 408
[19] Liang D, Ma R, Fu T T, Zhu C Y, Wang K, Ma Y G and Luo G S 2019 Chem. Eng. Sci. 200 248
[20] Cheng W L, Sadr R, Dai J and Han A 2018 Biomed. Microdevices 20 72
[21] Link D, Anna S L, Weitz D and Stone H 2004 Phys. Rev. Lett. 92 054503
[22] Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L and Tabeling P 2009 Phys. Fluids 21 072001
[23] Leshansky A M and Pismen L M 2009 Phys. Fluids 21 023303
[24] Ba Y, Liu H, Sun J and Zheng R 2015 Int. J. Heat Mass Transfer 90 931
[25] Liu H and Zhang Y 2009 J. Appl. Phys. 106 034906
[26] Lim A E, Lim C Y, Lam Y C and Lim Y H 2019 Chem. Eng. Sci. 202 417
[27] Chen Y P and Deng Z L 2017 J. Fluid Mech. 819 401
[28] Bedram A, Moosavi A and Hannani S K 2015 Phys. Rev. E 91 053012
[29] Liu H, Ju Y, Wang N, Xi G and Zhang Y 2015 Phys. Rev. E 92 033306
[30] Caprini D, Sinibaldi G, Marino L and Casciola C M 2018 Microfluid Nanofluid 22 85
[31] Zhang C B, Deng Z L and Chen Y P 2014 Int. J. Heat Mass Transfer 70 322
[32] Li Q X, Chai Z H, Shi B C and Liang H 2014 Phys. Rev. E 90 043015
[33] Liu Y Y, Yue J, Zhao S N, Yao C Q and Chen G W 2018 AIChE J. 64 376
[34] Liu X, Zhang C, Yu W, Deng Z and Chen Y 2016 Sci. Bull. 61 811
[35] Wang J, Liu J, Han J and Guan J 2013 Phys. Rev. Lett. 110 066001
[36] Zhou C, Yue P and Feng J J 2006 Phys. Fluids 18 092105
[37] Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S and Jan Y J 2001 J. Comput. Phys. 169 708
[38] Hirt C W and Nichols B D 1981 J. Comput. Phys. 39 201
[39] Smith K, Ottino J and De La Cruz M O 2004 Phys. Rev. Lett. 93 204501
[40] Cristini V and Tan Y C 2004 Lab Chip 4 257
[41] Li J, Renardy Y Y and Renardy M 2000 Phys. Fluids 12 269
[42] Brackbill J U, Kothe D B and Zemach C 1992 J. Comput. Phys. 100 335
[1] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[2] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[3] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[4] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[5] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[6] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[7] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[8] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[9] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[10] Phase field simulation of single bubble behavior under an electric field
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Sheng Xu(徐升). Chin. Phys. B, 2018, 27(9): 094704.
[11] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[12] A lattice Boltzmann-cellular automaton study on dendrite growth with melt convection in solidification of ternary alloys
Dong-Ke Sun(孙东科), Zhen-Hua Chai(柴振华), Qian Li(李谦), Guang Lin(林光). Chin. Phys. B, 2018, 27(8): 088105.
[13] Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy
Haiyun Qin(秦海芸), Wei Zhao(赵伟), Chen Zhang(张琛), Yong Liu(刘勇), Guiren Wang(王归仁), Kaige Wang(王凯歌). Chin. Phys. B, 2018, 27(3): 037803.
[14] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[15] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
No Suggested Reading articles found!