Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028703    DOI: 10.1088/1674-1056/ac381c
RAPID COMMUNICATION Prev   Next  

Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments

Guoqiang Li(李国强)1,†, Yanping Liu(刘艳平)1,†, Jingru Yao(姚静如)1, Kena Song(宋克纳)2, Gao Wang(王高)1, Lianjie Zhou(周连杰)1, Guo Chen(陈果)1, and Liyu Liu(刘雳宇)1,‡
1 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China;
2 College of Medical Technology and Engineering, Henan University of Science and Technology, Henan 471023, China
Abstract  The in vivo tumor microenvironment is a complex niche that includes heterogeneous physical structures, unique biochemical gradients and multiple cell interactions. Its high-fidelity in vitro reconstruction is of fundamental importance to improve current understandings of cell behavior, efficacy predictions and drug safety. In this study, we have developed a high-throughput biochip with hundreds of composite extracellular matrix (ECM) microchambers to co-culture invasive breast cancer cells (MDA-MB-231-RFP) and normal breast epithelial cells (MCF-10A-GFP). The composite ECM is composed of type I collagen and Matrigel which provides a heterogeneous microenvironment that is similar to that of in vivo cell growth. Additionally, the growth factors and drug gradients that involve human epidermal growth factor (EGF), discoidin domain receptor 1 (DDR1) inhibitor 7rh and matrix metalloproteinase inhibitor batimastat allow for the mimicking of the complex in vivo biochemical microenvironment to investigate their effect on the spatial-temporal dynamics of cell growth. Our results demonstrate that the MDA-MB-231-RFP cells and MCF-10A-GFP cells exhibit different spatial proliferation behaviors under the combination of growth factors and drugs. Basing on the experimental data, we have also developed a cellular automata (CA) model that incorporated drug diffusion to describe the experimental phenomenon, as well as employed Shannon entropy (SE) to explore the effect of the drug diffusion coefficient on the spatial-temporal dynamics of cell growth. The results indicate that the uniform cell growth is related to the drug diffusion coefficient, which reveals that the pore size of the ECM plays a key role in the formation of complex biochemical gradients. Therefore, our integrated, biomimetic and high-throughput co-culture platforms, as well as the computational model can be used as an effective tool for investigating cancer pathogenesis and drug development.
Keywords:  microfluidic      high-throughput      biochemical gradient      cancer  
Received:  22 September 2021      Revised:  21 October 2021      Accepted manuscript online:  10 November 2021
PACS:  87.85.dh (Cells on a chip)  
  87.80.-y (Biophysical techniques (research methods))  
  87.18.Gh (Cell-cell communication; collective behavior of motile cells)  
  87.50.cf (Biophysical mechanisms of interaction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974066 and 12174041), the Fundamental and Advanced Research Program of Chongqing, China (Grant No. cstc2019jcyj-msxmX0477), the Capital Health Development Research Project (Grant No. 2020-2-2072), the Key Specialized Research and Development Breakthrough of Henan Province, China (Grant No. 212102310887), and the Key Scientific Research Projects of Colleges and Universities of Henan Province, China (Grant No. 21A416005). In addition, we would like to thank Miss Qin Deng at the Analytical and Testing Center of Chongqing University for her assistance with the confocal imaging.
Corresponding Authors:  Liyu Liu     E-mail:  lyliu@cqu.edu.cn

Cite this article: 

Guoqiang Li(李国强), Yanping Liu(刘艳平), Jingru Yao(姚静如), Kena Song(宋克纳), Gao Wang(王高), Lianjie Zhou(周连杰), Guo Chen(陈果), and Liyu Liu(刘雳宇) Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments 2022 Chin. Phys. B 31 028703

[1] Li C I, Flanagan M R, Tang M T C, Porter P L and Malone K E 2021 Cancer Res. 81 2799
[2] Jia H, Wang Z J, Zhang J Y and Feng F 2021 Life Sci. 268 119007
[3] Dongre A, Rashidian M, Eaton E N, Reinhardt F, Thiru P, Zagorulya M, Nepal S, Banaz T, Martner A, Spranger S and Weinberg R A 2021 Cancer Discov. 11 1286
[4] Walma D A C and Yamada K M 2020 Development 147 dev175596 16
[5] Garde A and Sherwood D R 2021 Trends Cell Biol. 31 445
[6] Amorim S, Reis C A, Reis R L and Pires R A 2021 Trends Biotechnol. 39 90
[7] Carvalho M R, Barata D, Teixeira L M, Giselbrecht S, Reis R L, Oliveira J M, Truckenmuller R and Habibovic P 2019 Sci. Adv. 5 eaaw1317 12
[8] Xu J G, Huang M S, Wang H F and Fang Q 2019 Anal. Chem. 91 10757
[9] Carvalho M R, Lima D, Reis R L, Oliveira J M and Correlo V M 2017 Stem Cell Rev. Rep. 13 347
[10] Huang D and Xiang N 2021 Lab. Chip 21 1409
[11] Zhu S, Jiang F T, Han Y, Xiang N and Ni Z H 2020 Analyst 145 7103
[12] Tang W L, Zhu S, Jiang D, Zhu L Y, Yang J Q and Xiang N 2020 Lab Chip 20 3485
[13] Ma Y H V, Middleton K, You L D and Sun Y 2018 Microsyst. Nanoeng. 4 17104
[14] Shi Y W, Cai Y, Cao Y H, Hong Z Y and Chai Y F 2021 Trac-Trends Anal. Chem. 134 116118
[15] Chen M B, Whisler J A, Froese J, Yu C, Shin Y J and Kamm R D 2017 Nat. Protoc. 12 865
[16] Wang L, Tao T T, Su W T, Yu H, Yu Y and Qin J H 2017 Lab. Chip 17 1749
[17] Ayuso J M, Gillette A, Lugo-Cintron K, Acevedo-Acevedo S, Gomez I, Morgan M, Heaster T, Wisinski K B, Palecek S P, Skala M C and Beebe D J 2018 EBioMedicine 37 144
[18] Takahashi E, Yamaguchi D and Yamaoka Y 2020 Int. J. Mol. S. 21 2565
[19] Howard M 2012 Trends Cell Biol. 22 311
[20] Cole J and Gagnon Z 2019 Biomicrofluidics 13 064107
[21] Garcia-Seyda N, Aoun L, Tishkova V, Seveau V, Biarnes-Pelicot M, Bajenoff M, Valignat M P and Theodoly O 2020 Lab. Chip 20 1639
[22] Kilinc D, Schwab J, Rampini S, Ikpekha O W, Thampi A, Blasiak A, Li P, Schwamborn R, Kolch W, Matallanas D and Lee G U 2016 Integr. Biol. 8 39
[23] Agusil J P, Arjona M I, Duch M, Fuste N and Plaza J A 2020 Small 16 2004691
[24] Iyer M A and Eddington D T 2019 Lab. Chip 19 574
[25] Zhang J, Chen Z Z, Zhang Y Y, Wang X C, Ouyang J, Zhu J F, Yan Y C, Sun X W, Wang F, Li X R, Ye H, Sun S Q, Yu Q D, Sun J W, Ge J J, Li Q W, Han Q Q, Pu Y P and Gu Z Z 2021 Lab. Chip 21 3804
[26] van Duinen V, Zhu D, Ramakers C, van Zonneveld A J, Vulto P and Hankemeier T 2019 Angiogenesis 22 157
[27] Jiao Y and Torquato S 2012 Phys. Biol. 9 036009
[28] Lv Y L, Li G Q, Peng H Y, Liu Y P, Yao J R, Wang G, Sun J F, Liu J H, Zhang H F, Chen G and Liu L Y 2020 Lab. Chip 20 3051
[29] Krtolica A, de Solorzano C O, Lockett S and Campisi J 2002 Cytometry 49 73
[30] Fan Q H, Liu R C, Jiao Y, Tian C X, Farrell J D, Diao W W, Wang X C, Zhang F R, Yuan W, Han H B, Chen J F, Yang Y, Zhang X X, Ye F F, Li M, Ouyang Z C and Liu L Y 2017 Lab. Chip 17 2852
[31] Schedin P 2006 Nat. Rev. Cancer 6 281
[32] Liu H T, Wang Y Q, Cui K L, Guo Y Q, Zhang X and Qin J H 2019 Adv. Mater. 1902042 28
[33] Woodward T L, Xie J W, Fendrick J L and Haslam S Z 2000 Endocrinology 141 3578
[34] Sledge G W, Qulali M, Goulet R, Bone E A and Fife R 1995 J. Natl. Cancer Inst. 87 1546
[35] Gao M S, Duan L, Luo J F, Zhang L W, Lu X Y, Zhang Y, Zhang Z, Tu Z C, Xu Y, Ren X M and Ding K 2013 J. Med. Chem. 56 3281
[36] Yang J S, Lin C W, Su S C and Yang S F 2016 Expert Opin. Drug Metab. Toxicol. 12 191
[37] Edmundson H P 1969 Inf. Storage Retr. 5 151
[38] Wolfram S 1984 Physica D 10 1
[39] Wolfram S 1983 Rev. Mod. Phys. 55 601
[40] Liu M Y and Shi J 2019 J. Intell. Transport. S. 23 309
[41] Chai X L, Fu X L, Gan Z H, Zhang Y S, Lu Y and Chen Y R 2020 Neural Comput. Appl. 32 4961
[42] Costa A and Vale N 2021 Math. Biosci. Eng. 18 6328
[43] Rocha H L, Godet I, Kurtoglu F, Metzcar J, Konstantinopoulos K, Bhoyar S, Gilkes D M and Macklin P 2021 Iscience 24 102935
[44] Wang Z H, Xu Y X, Wu G Y, Zuo T T, Zhang J, Yang J, Yang Y F, Fang T X and Shen Q 2021 Acs Biomater. Sci. Eng. 7 166
[45] Cartaxo A L, Almeida J, Gualda E J, Marsal M, Loza-Alvarez P, Brito C and Isidro I A 2020 Bmc Bioinf. 21 529
[46] Shannon C E 1948 Bell Syst. Techn. J. 27 379
[47] Liu Y P, Jiao Y, Fan Q H, Zheng Y, Li G Q, Yao J R, Wang G, Lou S L, Chen G, Shuai J W and Liu L Y 2021 Biophys. J. 120 2552
[48] Lazerges M and Marque S 2020 C. R. Chim. 23 445
[1] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[2] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[3] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[4] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[5] A 3D biophysical model for cancer spheroid cell-enhanced invasion in collagen-oriented fiber microenvironment
Miaomiao Hai(海苗苗), Yanping Liu(刘艳平), Ling Xiong(熊玲), Guoqiang Li(李国强), Gao Wang(王高), Hongfei Zhang(张鸿飞), Jianwei Shuai(帅建伟), Guo Chen(陈果), Liyu Liu(刘雳宇). Chin. Phys. B, 2020, 29(9): 098702.
[6] Influence of matrix-metalloproteinase inhibitor on the interaction between cancer cells and matrigel
Teng Ye(叶腾), Fangfu Ye(叶方富), Feng Qiu(邱峰). Chin. Phys. B, 2020, 29(6): 068701.
[7] Gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging for detection of submucosal gastric cancer: in vitro study
Huaqin Wu(吴华钦), Haiyang Song(宋海洋), Yudian Huang(黄玉钿), Zhifang Li(李志芳), Shulian Wu(吴淑莲), Xiaoman Zhang(章小曼), Hui Li(李晖). Chin. Phys. B, 2020, 29(6): 064205.
[8] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[9] Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[10] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[11] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[12] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[13] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[14] Influence of matrigel on the shape and dynamics of cancer cells
Teng Ye(叶腾), Feng Qiu(邱峰). Chin. Phys. B, 2019, 28(10): 108704.
[15] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
No Suggested Reading articles found!