Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104701    DOI: 10.1088/1674-1056/ab3f26
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations

Jia-Xian Qin(秦嘉贤), Ya-Ming Chen(陈亚铭), Xiao-Gang Deng(邓小刚)
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  We derive in this paper a time stable seventh-order dissipative compact finite difference scheme with simultaneous approximation terms (SATs) for solving two-dimensional Euler equations. To stabilize the scheme, the choice of penalty coefficients for SATs is studied in detail. It is demonstrated that the derived scheme is quite suitable for multi-block problems with different spacial steps. The implementation of the scheme for the case with curvilinear grids is also discussed. Numerical experiments show that the proposed scheme is stable and achieves the design seventh-order convergence rate.
Keywords:  compact scheme      time stability      simultaneous approximation term      interface treatment  
Received:  06 May 2019      Revised:  26 June 2019      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.11.Bc (Finite difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11601517) and the Basic Research Foundation of National University of Defense Technology (Grant No. ZDYYJ-CYJ20140101).
Corresponding Authors:  Ya-Ming Chen     E-mail:  chenym-08@163.com

Cite this article: 

Jia-Xian Qin(秦嘉贤), Ya-Ming Chen(陈亚铭), Xiao-Gang Deng(邓小刚) Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations 2019 Chin. Phys. B 28 104701

[1] Deng X G, Jiang Y, Mao M L, Liu H Y, Li S and Tu G H 2015 Comput. Fluids 116 29
[2] Jiang Y, Mao M L, Deng X G and Liu H Y 2014 Comput. Fluids 104 73
[3] Deng X G and Chen Y M 2018 J. Comput. Phys. 372 80
[4] Wamg Z D, Yang J F, Wei Y K, et al. 2013 Chin. Phys. Lett. 30 094703
[5] Sun D K, Jiang D, Xiang N, et al. 2013 Chin. Phys. Lett. 30 074702
[6] Qin J X, Chen Y M and Deng X G 2019 Appl. Math. Mech-Engl. 40 823
[7] Carpenter M H, Gottlieb D and Abarbanel S 1994 J. Comput. Phys. 111 220
[8] Hesthaven J S 1998 SIAM J. Sci. Comput. 20 62
[9] Kopriva D A and Kolias J H 1996 J. Comput. Phys. 125 224
[10] Kozdon J E and Wilcox L C 2015 SIAM J. Sci. Comput. 38 A923
[11] Sun Y Z, Wang Z J and Liu Y 2007 Commun. Comput. Phys. 2 310
[12] Carpenter M H, Nördstrom J and Gottlieb D 1999 J. Comput. Phys. 148 341
[13] Carpenter M H, Nördstrom J and Gottlieb D 2010 J. Sci. Comput. 45 118
[14] Lundquist T, Malan A and Nördstrom J 2018 J. Comput. Phys. 362 49
[15] Gong J and Nördstrom J 2011 J. Comput. Appl. Math. 236 602
[16] Virta K and Mattsson K 2014 J. Sci. Comput. 61 90
[17] Wang S Y, Virta K and Kreiss G 2016 J. Sci. Comput. 68 1002
[18] Toro E 1999 Riemann Solvers and Numerical Method for Fluid Dynamics — A Practical Introduction (Berlin: Springer) pp. 2–5
[19] Fisher T C, Carpenter M H, Yamaleev N K and Frankel S H 2011 J. Comput. Phys. 230 3727
[20] Wang, L and Yu, M 2018 J. Sci. Comput. 75 253
[21] Chen Y M and Deng X G 2019 Comput. Fluids 185 13
[22] Casper J, Shu C W and Atkins H 1994 AIAA Journal 32 1970
[23] Dan X, Deng X G, Chen Y M, Dong Y D and Wang G X 2016 Comput. Fluids 129 20
[24] Svärd M and Nördstrom J 2008 J. Comput. Phys. 227 4805
[1] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[2] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping (刘平). Chin. Phys. B, 2013, 22(7): 070501.
[3] Chaos suppression of uncertain gyros in a given finite time
Mohammad Pourmahmood Aghababa, Hasan Pourmahmood Aghababa. Chin. Phys. B, 2012, 21(11): 110505.
[4] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[5] Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu(韦笃取) and Zhang Bo(张波). Chin. Phys. B, 2009, 18(4): 1399-1403.
No Suggested Reading articles found!