Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 096101    DOI: 10.1088/1674-1056/ab38a5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Van der Waals interlayer potential of graphitic structures: From Lennard-Jones to Kolmogorov-Crespy and Lebedeva models

Zbigniew Koziol1, Grzegorz Gawlik2, Jacek Jagielski1,2
1 National Center for Nuclear Research, Materials Research Laboratory, ul. Andrzeja So?tana 7, 05-400 Otwock-wierk, Poland;
2 Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa, Poland
Abstract  

The experimental knowledge on interlayer potential of graphitic materials is summarized and compared with the computational results based on phenomenological models. Besides Lennard-Jones approximation, the Mie potential is discussed, as well as the Kolmogorov-Crespy model and equation of Lebedeva et al. An agreement is found between a set of reported physical properties of graphite (layer binding energies, compressibility along c-axis in a broad pressure range, Raman frequencies for bulk shear and breathing modes under pressure), when a proper choice of model parameters is taken. It is argued that anisotropic potentials, Kolmogorov-Crespy and Lebedeva, are preferable for modeling, as they provide a better, self-consistent description. A method of fast numerical modeling, convenient for the accurate estimation of the discussed physical properties, is proposed. It may be useful in studies of other van der Waals homo/heterostructures as well.

Keywords:  graphene      van der Waals structures      interlayer potential  
Received:  06 June 2019      Revised:  16 July 2019      Published:  05 September 2019
PACS:  61.46.-w (Structure of nanoscale materials)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
Corresponding Authors:  Zbigniew Kozioł     E-mail:  zbigniew.koziol@ncbj.gov.pl

Cite this article: 

Zbigniew Koziol, Grzegorz Gawlik, Jacek Jagielski Van der Waals interlayer potential of graphitic structures: From Lennard-Jones to Kolmogorov-Crespy and Lebedeva models 2019 Chin. Phys. B 28 096101

[40] Jiang L, Huang Y, Jiang H, Ravichandran G, Hwang H G and Liu B 2006 J. Mech. Phys. Solids 54 2436
[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[41] He X, Kitipornchai S and Liew K 2005 J. Mech. Phys. Solids 53 303
[2] Le N B, Huan T D and Woods L M 2016 ACS Appl. Mater. Interfaces 9 6286
[42] Kitipornchai S, He X Q and Liew K M 2005 Phys. Rev. B 72 075443
[3] Wijk M M V, Schuring A, Katsnelson M I and Fasolino A 2015 2D Materials 2 34010
[43] Tan H, Jiang L, Huang Y, Liu B and Hwang K 2007 Compos. Sci. Technol. 67 2941
[4] Wijk M M V, Schuring A, Katsnelson M I and Fasolino A 2014 Phys. Rev. Lett. 113 135504
[44] Mie G 1903 Ann. Phys. 316 657
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 43 556
[45] Avendano C, Lafitte T, Galindo A, Adjiman C S, Jackson G and Muller E 2011 J. Phys. Chem. B 115 11154
[6] Bistritzer R and MacDonald A H 2011 Proc. Nat. Acad. Sci. 108 12233
[46] Kolmogorov A N and Crespi V H 2000 Phys. Rev. Lett. 85 4727
[7] Tarnopolsky G, Kruchkov A J Vishwanath A 2019 Phys. Rev. Lett 122 106405
[47] Kolmogorov A N and Crespi V H 2005 Phys. Rev. B 71 235415
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[48] Naik M H, Maity I, Maiti P K, and Jain M 2019 J. Phys. Chem. C 123 9770
[9] Peng H, Schröter N B M, Yin J, Wang H, Chung T F, Yang H, Ekahana S, Liu Z, Jiang J, Yang L, Zhang T, Ni H H, Barinov A, Chen Y P, Liu Z, Peng H and Chen Y 2017 Adv. Mater. 1606741
[49] Wijk M M V, Schuring A, Katsnelson M I and Fasolino A 2014 Phys. Rev. Lett. 113 135504
[10] Argentero G, Mittelberger A, Monazam M R A, Cao Y, Pennycook T J, Mangler C, Kramberger C, Kotakoski J, Geim A K and Meyer A J C 2017 Nano Lett. 17 1409
[50] Schuring A 2014 Master Thesis (Radbound University Niimegen)
[11] Lin S, Lu Y, Xu J, Feng S and Li J 2017 Nano Energy 40 122
[51] Ng T W, Lau C Y, Bernados-Chamagne E, Liu J Z, Sheridan J and Tan N 2012 Nanoscale Res. Lett. 7 185
[12] Skoblin G, Sun J and Yurgens A 2018 Appl. Phys. Lett. 112 063501
[52] Guerra R, Tartaglino U, Vanossi A and Tosatti E 2010 Nat. Mater. 9 634
[13] Wei X, Yan F G, Shen C, Lv Q S and Wang K Y 2017 Chin. Phys. B 26 038504
[53] Lebedeva I V, Knizhnik A A, Popov A M, Lozovik Y E and Potapkin B V 2012 Physica E 44 949
[14] Congpu M, Jianyong X and Zhongyuan L 2017 J. Mater. Res. 32 4115
[54] Lebedeva I V, Knizhnik A A, Popov A M, Lozovik Y E and Potapkin B V 2011 Phys. Rev. B 84 245437
[15] Celebonovic V, Pesic J, Gajic R, Vasic B and Matkovic A 2019 J. Appl. Phys. 125 154301
[55] Jiang J 2014 J. Appl. Phys. 116 164313
[16] Wang J G, Mu X J, Sun M T and Mu T J 2019 Appl. Mater. Today 6 1
[56] Baskin V and Meyer L 1955 Phys. Rev. B 100 544
[17] Houssa M, Dimoulas A and Molle A 2015 J. Phys.:Condens. Matter 27 253002
[57] Kiang C H, Endo M, Ajayan P M, Dresselhaus G and Dresselhaus M S 1998 Phys. Rev. Lett. 81 1869
[18] Kvashnin D G and Chernozatonskii L A 2017 JETP Lett. 105 250
[58] Trucano P and Chen R 1975 Nature 258 136
[19] Luo M, Shen Y H and Yin T L 2017 JETP Lett. 105 255
[59] Plimpton S 1995 J. Comp. Phys. 7 1
[20] Bellus M Z, Li M, Lane S D, Ceballos F, Cui Q, Zeng X C and Zhao H 2017 Nanoscale Horiz. 2 31
[60] Gao W and Huang R 2011 J. Phys. D 44 452001
[21] Yan F, Zhao L, Patané A, Hu P A, Wei X, Luo W, Zhang D, Lv Q, Feng Q, Shen C, Chang K, Eaves L and Wang K 2017 Nanotechnology 28 27LT01
[61] Wang Y, Panzik J E, Kiefer B and Lee K K M 2012 Sci. Rep. 2 520
[22] Luo M, Yin H H and Chu J H 2017 JETP Lett. 6 672
[62] Lynch R W and Drickamer H G 1966 J. Chem. Phys. 44 181
[23] Sanchez O L, Ovchinnikov D, Misra S, Allain A and Kis A 2016 Nano Lett. 16 5792
[63] Zhao Y X and Spain I L 1989 Phys. Rev. B 40 993
[24] Gurram M, Omar S and Wees B J V 2017 Nat. Commun. 8 248
[64] Hanfland M, Beister H and Syassen K 1989 Phys. Rev. B 39 12598
[25] Shim J, Jo S, Kim M, Song Y J, Kim J and Park J 2017 ACS Nano 11 6319
[65] Clark S, Jeon K, Chen J and Yoo C 2013 Solid State Commun. 4 15
[26] Li W, Wang X and Dai X 2017 Solid State Commun. 254 37
[66] Lee J, Lee S, Ahn J, Kim S, Wilson J I B and John P 2008 J. Chem. Phys. 129 234709
[27] Michel K H, Çakir D, Sevik C and Peeters F M 2017 Phys. Rev. B 95 125415
[67] Dahn J R, Fong R and Spoon M J 1990 Phys. Rev. B 42 6424
[28] Kawai S, Foster A S, Björkman T, Nowakowska S, Björk J, Canova F F, Gade L H, Jung T A and Meyer E 2016 Nat. Commun. 7 11559
[68] Norimatsu W and Kusunoki M 2010 Phys. Rev. B 81 161410
[29] Rozhkov A, Sboychakov A, Rakhmanov A and Nori F 2016 Phys. Rep. 648 1
[69] Charlier J, Gonze X and Michenaud J 1991 Phys. Rev. B 43 4579
[30] Girifalco L A and Hodak M 2002 Phys. Rev. B 65 125404
[70] Yoshizawa K, Kato T and Yamabe T 1996 J. Chem. Phys. 105 2099
[31] Charlier J, Gonze X and Michenaud J 1994 Europhys. Lett. 28 403
[71] Charlier J C, Gonze X and Michenaud J P 1994 Carbon 32 289
[32] Trickey S B, Müller-Plathe F, Diercksen G H F and Boettger J C 1992 Phys. Rev. B 45 4460
[72] Gao W and Tkatchenko A 2015 Phys. Rev. Lett. 114 096101
[33] Rydberg H, Dion M, Jacobson N, Schröder E, Hyldgaard P, Simak S I, Langreth D C and Lundqvist B I 2003 Phys. Rev. Lett. 91 126402
[73] Tao W, Qing G, Yan L and Kuang S 2012 Chin. Phys. B 21 067301
[34] DiVincenzo D P, Mele E J and Holzwarth N A W 1983 Phys. Rev. B 27 2458
[74] Lipson H and Stokes A 1942 Proc. Roy. Soc. A 181 101
[35] Schabel M C and Martins J L 1992 Phys. Rev. B 46 7185
[75] Dolling G and Brockhouse B N 1962 Phys. Rev. 128 1120
[36] Mostaani E, Drummond N D and Fal'ko V I 2015 Phys. Rev. Lett. 115 115501
[76] Lebedev A V, Lebedeva I V, Popov A M and Knizhnik A A 2017 Phys. Rev. B 96 085432
[37] Birowska M, Milowska K and Majewski J 2011 Acta Phys. Pol. A 120 845
[77] Shang J, Cong C, Zhang J, Xiong Q, Gurzadyan G G and Yu T 2013 J. Raman Spec. 44 70
[38] Chakarova-Kack S D, Schroder E, Lundqvistand B I and Langreth D C 2006 Phys. Rev. Lett. 96 146107
[78] Baranowski J M, Mozdzonek M, Dabrowski P, Grodecki K, Osewski P, Kozlowski W, Kopciuszynski M, Jalochowski M and Strupinski W 2013 Graphene 2 115
[39] Lu J P, Li X P and Martin R M 1992 Phys. Rev. Lett. 68 1551
[79] Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404
[40] Jiang L, Huang Y, Jiang H, Ravichandran G, Hwang H G and Liu B 2006 J. Mech. Phys. Solids 54 2436
[80] Thornton S T and Marion J B 2003 Classical Dynamics of Particles and Systems (5th edn.) (Brooks Cole, Pacific Grove, CA)
[41] He X, Kitipornchai S and Liew K 2005 J. Mech. Phys. Solids 53 303
[81] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
[42] Kitipornchai S, He X Q and Liew K M 2005 Phys. Rev. B 72 075443
[82] Cong C and Yu T 2014 Nat. Commun. 5 4709
[43] Tan H, Jiang L, Huang Y, Liu B and Hwang K 2007 Compos. Sci. Technol. 67 2941
[44] Mie G 1903 Ann. Phys. 316 657
[45] Avendano C, Lafitte T, Galindo A, Adjiman C S, Jackson G and Muller E 2011 J. Phys. Chem. B 115 11154
[46] Kolmogorov A N and Crespi V H 2000 Phys. Rev. Lett. 85 4727
[47] Kolmogorov A N and Crespi V H 2005 Phys. Rev. B 71 235415
[48] Naik M H, Maity I, Maiti P K, and Jain M 2019 J. Phys. Chem. C 123 9770
[49] Wijk M M V, Schuring A, Katsnelson M I and Fasolino A 2014 Phys. Rev. Lett. 113 135504
[50] Schuring A 2014 Master Thesis (Radbound University Niimegen)
[51] Ng T W, Lau C Y, Bernados-Chamagne E, Liu J Z, Sheridan J and Tan N 2012 Nanoscale Res. Lett. 7 185
[52] Guerra R, Tartaglino U, Vanossi A and Tosatti E 2010 Nat. Mater. 9 634
[53] Lebedeva I V, Knizhnik A A, Popov A M, Lozovik Y E and Potapkin B V 2012 Physica E 44 949
[54] Lebedeva I V, Knizhnik A A, Popov A M, Lozovik Y E and Potapkin B V 2011 Phys. Rev. B 84 245437
[55] Jiang J 2014 J. Appl. Phys. 116 164313
[56] Baskin V and Meyer L 1955 Phys. Rev. B 100 544
[57] Kiang C H, Endo M, Ajayan P M, Dresselhaus G and Dresselhaus M S 1998 Phys. Rev. Lett. 81 1869
[58] Trucano P and Chen R 1975 Nature 258 136
[59] Plimpton S 1995 J. Comp. Phys. 7 1
[60] Gao W and Huang R 2011 J. Phys. D 44 452001
[61] Wang Y, Panzik J E, Kiefer B and Lee K K M 2012 Sci. Rep. 2 520
[62] Lynch R W and Drickamer H G 1966 J. Chem. Phys. 44 181
[63] Zhao Y X and Spain I L 1989 Phys. Rev. B 40 993
[64] Hanfland M, Beister H and Syassen K 1989 Phys. Rev. B 39 12598
[65] Clark S, Jeon K, Chen J and Yoo C 2013 Solid State Commun. 4 15
[66] Lee J, Lee S, Ahn J, Kim S, Wilson J I B and John P 2008 J. Chem. Phys. 129 234709
[67] Dahn J R, Fong R and Spoon M J 1990 Phys. Rev. B 42 6424
[68] Norimatsu W and Kusunoki M 2010 Phys. Rev. B 81 161410
[69] Charlier J, Gonze X and Michenaud J 1991 Phys. Rev. B 43 4579
[70] Yoshizawa K, Kato T and Yamabe T 1996 J. Chem. Phys. 105 2099
[71] Charlier J C, Gonze X and Michenaud J P 1994 Carbon 32 289
[72] Gao W and Tkatchenko A 2015 Phys. Rev. Lett. 114 096101
[73] Tao W, Qing G, Yan L and Kuang S 2012 Chin. Phys. B 21 067301
[74] Lipson H and Stokes A 1942 Proc. Roy. Soc. A 181 101
[75] Dolling G and Brockhouse B N 1962 Phys. Rev. 128 1120
[76] Lebedev A V, Lebedeva I V, Popov A M and Knizhnik A A 2017 Phys. Rev. B 96 085432
[77] Shang J, Cong C, Zhang J, Xiong Q, Gurzadyan G G and Yu T 2013 J. Raman Spec. 44 70
[78] Baranowski J M, Mozdzonek M, Dabrowski P, Grodecki K, Osewski P, Kozlowski W, Kopciuszynski M, Jalochowski M and Strupinski W 2013 Graphene 2 115
[79] Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404
[80] Thornton S T and Marion J B 2003 Classical Dynamics of Particles and Systems (5th edn.) (Brooks Cole, Pacific Grove, CA)
[81] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
[82] Cong C and Yu T 2014 Nat. Commun. 5 4709
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[6] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[7] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[13] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
No Suggested Reading articles found!