Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056103    DOI: 10.1088/1674-1056/28/5/056103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor

Hai-Bo Wang(王海波)1, Zhen-Lin Luo(罗震林)2, Yuan-Jun Yang(杨远俊)2, Qing-Qing Liu(刘清青)3, Si-Xia Hu(胡思侠)2, Meng-Meng Yang(杨蒙蒙)2, Chang-Qing Jin(靳常青)3, Chen Gao(高琛)2,4
1 Tonghua Normal University, Tonghua 134002, China;
2 National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China;
4 CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026, China
Abstract  

A new low temperature Pmmm (120 K) phase was found in high temperature superconductor Sr2CuO3+δ, which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron-lattice interaction was mainly elaborated to understand the superconductivity of Sr2CuO3+δ.

Keywords:  resonant x-ray diffraction      x-ray absorption fine structure      modulated phase      superconductivity  
Received:  30 November 2018      Revised:  12 March 2019      Published:  05 May 2019
PACS:  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  05.70.Fh (Phase transitions: general studies)  
  87.64.kd (X-ray and EXAFS)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB922004/3, 2010CB934501, and 2009CB929502), the Funds of Jilin Province, China (Grant No. JJKH20180860KJ), the National Natural Science Foundation of China, and the Fundamental Research Funds for the Central Universities, China (Grant No. WK2310000043). The authors appreciate the beam time at BL14W1 and BL14B1 of Shanghai Synchrotron Radiation Facility.

Corresponding Authors:  Zhen-Lin Luo, Chen Gao     E-mail:  cgao@ustc.edu.cn;zlluo@ustc.edu.cn

Cite this article: 

Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛) Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor 2019 Chin. Phys. B 28 056103

[1] Plakida N 2010 High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications (New York: Springer)
[2] Lanzara A 2001 Nature 412 510
[3] Orenstein J and Millis A J 2000 Science 288 468
[4] Vojta M 2009 Adv. Phys. 58 699
[5] Kohsaka Y, Taylor C, Wahl P, Schmidt A, Lee J, Fujita K, Alldredge J W, McElroy K, Lee J, Eisaki H, Uchida S, Lee D H and Davis J C 2008 Nature 454 1072
[6] Li Q, Hücker M, Gu G D, Tsvelik A M and Tranquada J M 2007 Phys. Rev. Lett. 99 067001
[7] Kim Y J, Gu G D, Gog T and Casa D 2008 Phys. Rev. B 77 064520
[8] Fan X B, Chen J X and Xiang S K 1991 Acta Phys. Sin. 40 298 (in Chinese)
[9] Shen X L, Cai Z, Shen C X, Lu W, Dong X L, Zhou F and Zhao Z X 2009 Chin. Phys. B 18 2893
[10] Guo Q Z and Shi P Z 2010 Chin. Phys. B 19 027401
[11] Zhang Y L, Liang J K, Rao G H, Cheng X R, Li K S, Lei L, Zheng D N and Xie S S 1990 Acta Phys. Sin. 39 154 (in Chinese)
[12] Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P and Kim E A 2010 Nature 466 347
[13] Parker C V, Aynajian P, da Silva N E H, Pushp A, Ono S, Wen J, Xu Z, Gu G and Yazdani A 2010 Nature 468 677
[14] Berg E, Fradkin E, Kivelson S A and Tranquada J 2009 New J. Phys. 11 115004
[15] Tranquada J M 2012 Phys. B: Condens. Matter 407 1771
[16] Emery V J, Kivelson S A and Tranquada J M 1999 Stripe Phases in High-temperature Superconductors (New York: Springer)
[17] Fabbris G, Hücker M, Gu G D, Tranquada J M and Haskel D 2013 Phys. Rev. B 88 060507
[18] Enoki M, Fujita M, Nishizaki T, Iikubo S, Singh D K, Chang S, Tranquada J M and Yamada K 2013 Phys. Rev. Lett. 110 017004
[19] Wang F, Wu X S and Jiang S S 2000 Acta Phys. Sin. 49 1541 (in Chinese)
[20] Aji V, Shekhter A and Varma C M 2010 Phys. Rev. B 81 064515
[21] Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q and Uchida S 2006 Phys. Rev. B 74 100506(R)
[22] Liu Q Q, Yang H, Yu Y, Yang L X, Yu R C, Li F Y, Jin C Q and Uchida S 2007 Phys. C Supercond. & Its Appl. 463-465 100
[23] Wang Y Y, Zhang H, Dravid V P, Marks L D, Han P D and Payne D A 1995 Phys. C: Supercond. 255 247
[24] Liu Y, Shen X, Liu QQ, Li X, Feng SM, Yu RC, Uchida S and Jin CQ 2014 Phys. C: Supercond. & Its Appl. 497 34
[25] Fink J, Schierle E, Weschke E, Geck J, Hawthorn D, Wadati H, Hu H H, Durr H A, Wizent N, Buchner B and Sawatzky G A 2009 Phys. Rev. B 79 100502
[26] Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A and Feng D L 2005 Nat. Phys. 1 155
[27] Haase J, Slichter C P, Stern R, Milling C T and Hinks D G 2000 J. Supercond. 13 723
[28] Da S N E, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le Tacon M and Yazdani A 2014 Science 343 393
[29] Ourmazd A Spence J C H 1987 Nature 329 425
[30] Shaw T M, Shivashankar S A, La Placa S J, Cuomo J J, McGuire T R, Roy R A, Kelleher K H and Yee D S 1988 Phys. Rev. B 37 9856
[31] Huecker M, Kim Young-June, Gu G D, Tranquada J M, Gaulin B D and Lynn J W 2005 Phys. Rev. B 71 094510
[32] Shimakawa Y, Jorgensen J D, Mitchell J F, Hunter B A, Shaked H, Hinks D G, Hitterman R L, Hiroi Z and Takano M 1994 Phys. C 228 73
[33] Zhang C J Oyanagi H 2009 Phys. Rev. B 79 064521
[34] Saini N L, Lanzara A, Missori M, Rossetti T, Bianconi A, Oyanagi H, Yamaguchi H, Oka K and Ito T 1997 Phys. Rev. B 55 12759
[35] Oyanagi H and Zhang C 2013 J. Phys.: Conf. Ser. 428 012042
[36] Bianconi A, Saini N L, Lanzara A, Missori M, Rossetti T, Oyanagi H, Yamaguchi H, Oka K and Ito T 1996 Phys. Rev. Lett. 76 3412
[1] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[2] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[3] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[4] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[5] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[6] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[7] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[8] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[9] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[10] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[11] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[12] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[13] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[14] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[15] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
No Suggested Reading articles found!