Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046802    DOI: 10.1088/1674-1056/28/4/046802
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

Tunable 2H-TaSe2 room-temperature terahertz photodetector

Jin Wang(王瑾)1,2, Cheng Guo(郭程)2,3, Wanlong Guo(郭万龙)2,3, Lin Wang(王林)2,3, Wangzhou Shi(石旺舟)1, Xiaoshuang Chen(陈效双)2,3
1 Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
2 State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Two-dimensional transition metal dichalcogenides (TMDs) provide fertile ground to study the interplay between dimensionality and electronic properties because they exhibit a variety of electronic phases, such as semiconducting, superconducting, charge density waves (CDW) states, and other unconventional physical properties. Compared with other classical TMDs, such as Mott insulator 1T-TaS2 or superconducting 2H-NbSe2, bulk 2H-TaSe2 has been a canonical system and a touchstone for modeling the CDW measurement with a less complex phase diagram. In contrast to ordinary semiconductors that have only single-particle excitations, CDW can have collective excitation and carry current in a collective fashion. However, manipulating this collective condensation of these intriguing systems for device applications has not been explored. Here, the CDW-induced collective driven of non-equilibrium carriers in a field-effect transistor has been demonstrated for the sensitive photodetection at the highly-pursuit terahertz band. We show that the 2H-TaSe2-based photodetector exhibits a fast photoresponse, as short as 14 μs, and a responsivity of over 27 V/W at room temperature. The fast response time, relative high responsivity and ease of fabrication of these devices yields a new prospect of exploring CDW condensate in TMDs with the aim of overcoming the existing limitations for a variety of practical applications at THz spectral range.

Keywords:  terahertz detection      transition metal dichalcogenides      photoconductive  
Received:  12 December 2018      Revised:  01 February 2019      Accepted manuscript online: 
PACS:  68.47.De (Metallic surfaces)  
  71.35.Lk (Collective effects (Bose effects, phase space filling, and excitonic phase transitions))  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: 

Project supported by the State Key Basic Research Program of China (Grant Nos. 2017YFA0205801, 2017YFA0305500, and 2013CB632705), the National Natural Science Foundation of China (Grant Nos. 11334008, 61290301, 61521005, 61405230, and 61675222), the Youth Innovation Promotion Association (CAS), and the Aviation Science Fund (Grant No. 20162490001).

Corresponding Authors:  Lin Wang, Wangzhou Shi, Xiaoshuang Chen     E-mail:  wanglin@mail.sitp.ac.cn;wzshi@shnu.edu.cn;xschen@mail.sitp.ac.cn

Cite this article: 

Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双) Tunable 2H-TaSe2 room-temperature terahertz photodetector 2019 Chin. Phys. B 28 046802

[1] Ferguson B, Wang S, Abbott D and Zhang X C 2003 Proc. SPIE 5070 7
[2] Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R and Kemp M C 2005 Appl. Phys. Lett. 86 241116
[3] Liu H B, Chen Y Q, Bastiaans G J and Zhang X C 2006 Opt. Express 14 415
[4] Taylor A J, Funk D J and Calgaro F 2004 Appl. Spectrosc. 58 428
[5] Koppens F H L, Mueller T, Avouris Ph, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[6] Solomon S 1988 Rev. Geophys. 26 1
[7] Richards P L 1994 J. Appl. Phys. 76 1
[8] Yang J, Ruan S C and Zhang M 2008 Chin. Opt. Lett. 6 29
[9] Dyakonov M I and Shur M S 1996 IEEE T. Electron. Dev. 43 1640
[10] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[12] Rossnagel K 2011 J. Phys.: Condens. Matter. 23 213001
[13] Hajiyev P, Cong C, Qiu C and Yu T 2013 Sci. Rep. 3 2593
[14] Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G and Stake J 2014 Nano Lett. 14 5834
[15] Qin H, Sun J D, Liang S, Li X, Yang X X, He Z H, Yu C and Feng Z H 2017 Carbon 116 760
[16] Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A and Vitiello M S 2015 Adv. Mater. 27 5567
[17] Viti L, Hu J, Coquillat D, Politano A, Consejo C and Knap W 2016 Adv. Mater. 28 7390
[18] Wu D, Ma Y C, Niu Y Y, Liu Q M, Dong T, Zhang S J, Niu J S, Zhou H B, Wei J, Wang Y X, Zhao Z R and Wang N L 2017 IEEE Trans. Terahertz Sci. Technol. 7 614
[19] Generalov A A, Andersson M A, Yang X X, Vorobiev A and Stake J 2017 IEEE Trans. Terahertz Sci. Technol. 7 614
[20] Tang W W, Liu C L, Wang L, Chen X S, Luo M, Guo W L, Wang S W and Lu W 2017 Appl. Phys. Lett. 111 153502
[21] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[22] Jena D and Konar A 2007 Phys. Rev. Lett. 98 136805
[23] Jang C, Adam S, Chen J H, Williams D, Das Sarma S and Fuhrer M S 2008 Phys. Rev. Lett. 101 146805
[24] Mak K F, Lee C and Hone J 2010 Phys. Rev. Lett. 105 136805
[1] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[2] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[3] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[4] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[5] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[6] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[7] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[8] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[9] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[10] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[11] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
[12] Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东). Chin. Phys. B, 2019, 28(2): 028501.
[13] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[14] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[15] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
No Suggested Reading articles found!