|
|
Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect |
Xue Zhou(周雪)1, Zeyu Jiang(姜泽禹)1, Kenan Zhang(张柯楠)1, Wei Yao(姚维)1, Mingzhe Yan(颜明哲)1, Hongyun Zhang(张红云)1, Wenhui Duan(段文晖)1, Shuyun Zhou(周树云)1,2 |
1 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract Atomically thin transition metal dichalcogenide films with distorted trigonal (1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investigation of its electronic structure are critical. Here we report the electronic structure of 1T'-MoTe2 films grown by molecular beam epitaxy (MBE). Growth of the 1T'-MoTe2 film depends critically on the substrate temperature, and successful growth of the film is indicated by streaky stripes in the reflection high energy electron diffraction (RHEED) and sharp diffraction spots in the low energy electron diffraction (LEED). Angle-resolved photoemission spectroscopy (ARPES) measurements reveal a metallic behavior in the as-grown film with an overlap between the conduction and valence bands. First principles calculation suggests that a suitable tensile strain along the a-axis direction is needed to induce a gap to make it an insulator. Our work not only reports the electronic structure of MBE grown 1T'-MoTe2 films, but also provides insights for strain engineering to make it possible for quantum spin Hall effect.
|
Received: 18 June 2019
Revised: 06 September 2019
Accepted manuscript online:
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0301004 and 2015CB921001) and the National Natural Science Foundation of China (Grant Nos. 11334006, 11725418, and 11674188). |
Corresponding Authors:
Shuyun Zhou
E-mail: syzhou@mail.tsinghua.edu.cn
|
Cite this article:
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云) Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect 2019 Chin. Phys. B 28 107307
|
[29] |
Tang S J, Zhang C F, Jia C J, Ryu H, Hwang C, Hashimoto M, Lu D H, Liu Z, Devereaux T P, Shen Z X and Mo S K 2018 APL Mater. 6 026601
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[30] |
Diaz H C, Chaghi R, Ma Y J and Batzill M 2015 2D Mater. 2 040010
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[31] |
Wang Q Y, Zhang W H, Wang L L, He K, Ma X C and Xue Q K 2013 J. Phys.: Condens. Matter 25
|
[3] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[32] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[4] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[33] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[5] |
Liu C X, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
|
[34] |
Koma A, Sunouchi K and Miyajima T 1984 J. Vac. Sci. Technol. B 3 724
|
[6] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[35] |
Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C h, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M and Schaak R E 2016 Angew. Chem. Int. Ed. 55 2830
|
[7] |
Qian X F, Li J W, Fu L and Li J 2014 Science 346 1344
|
[36] |
Ruppert C, Aslan O B and Heinz T F 2014 Nano Lett. 11 6231
|
[8] |
Guo H, Zhang X and Shiping F 2012 Chin. Phys. B 21 117301
|
[37] |
Zhang H Y, Bao C H, Jiang Z Y, Zhang K N, Li H, Chen C Y, Wu Y, Duan W H, Asensio M C and Zhou S Y 2018 Nano Lett. 18 4664
|
[9] |
Rehman M U and Abid A A 2017 Chin. Phys. B 26 127304
|
[38] |
Zheng F P, Cai C Y, Ge S F, Zhang X F, Liu X, Lu H, Zhang Y D, Qiu J, Taniguchi T, Watanabe K, Jia S, Qi J S, Chen J H, Sun D and Feng J 2016 Adv. Mater. 28 4845
|
[10] |
Wang X, Li P and Ran Zhao Luo W 2018 Chin. Phys. B 27 087305
|
[39] |
Yang J J, Colen J, Liu J, Nguyen M C, Chern G W and Louca D 2017 Sci. Adv. 3 eaao4949
|
[11] |
Shen D P, Zhang X D, Sun Y, Kang T T, Dai N and Chu Jun Haoand Yu G L 2017 Acta Phys. Sin. 66 247301 (in Chinese)
|
[40] |
Kim H J, Kang S H, Hamada I and Son Y W 2017 Phys. Rev. B 95 180101
|
[12] |
Tang S J, Zhang C F, Wong D, et al. 2017 Nat. Phys. 13 683
|
[41] |
Dai X, Le C, Wu X X and Qin S S 2016 Chin. Phys. Lett. 33 127301
|
[13] |
Fei Z Y, Palomaki T, Wu S F, Zhao W J, Cai X H, Sun B S, Nguyen P, Finney J, Xu X D and Cobden D H 2017 Nat. Phys. 13 677
|
[14] |
Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
|
[15] |
Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J and Lee Y H 2015 Nat. Phys. 11 482
|
[16] |
Zhang K N, Bao C H, Gu Q Q, Ren X, Zhang H X, Deng K, Wu Y, Li Y, Feng J and Zhou S Y 2016 Nat. Commun. 7 13552
|
[17] |
Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
|
[18] |
Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Fan S S, Zhang H J, Chen X and Zhou S Y 2016 Nat. Phys. 12 1105
|
[19] |
Huang L, McCormick T M, Masayuki O, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N and Kaminski A 2016 Nat. Mater. 1 1155
|
[20] |
Qi Y P, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Felser C, Yan B H and Medvedev S A 2016 Nat. Commun. 7 11038
|
[21] |
Park J C, Yun S J, Kim H, Park J H, Chae S H, An S J, Kim J G, Kim S M, Kim K K and Lee Y H 2015 Acs Nano 9 6548
|
[22] |
Zhou L, Zubair A, Wang Z, Zhang X, Ouyang F P, Xu K, Fang W J, Ueno K, Li J, Palacios T, Kong J and Dresselhaus M S 2016 Adv. Mater. 28 9526
|
[23] |
Naylor C H, Parkin W M, Ping J L, Gao Z L, Zhou Y R, Kim Y, Streller F, Carpick R W, Rappe A M, Drndić M and Kikkawa J M 2016 Nano Lett. 16 4297
|
[24] |
Han G H, Keum D, Zhao J, Shin B G, Song S, Bae J J, Lee J, Kim J H, Moon B H and Lee Y H 2016 2D Mater. 2 031010
|
[25] |
Zhou J D, Liu F C, Lin J H, Huang X W, Xia J, Zhang B W, Zeng Q S, Wang H, Zhu C, Niu L, Wang X W, Fu W, Yu P, Chang T R, Hsu C H, Wu D, Jeng H T, Huang Y Z, Lin H, Shen Z X, Yang C L, Lu L, Suenaga K, Zhou W, Pantelides S T, Liu G T and Liu Z 2016 Adv. Mater. 29 1603471
|
[26] |
Chen J L, Wang G Y, Tang Y, Tian H, Xu J P, Dai X Q, Xu H, Jia J F, Wingkin H and Xie M H 2017 ACS Nano 11 3282
|
[27] |
Yu Y, Wang G, Qin S, Wu N, Wang Z, He K and Zhang X A 2017 Carbon 115 526
|
[28] |
Vishwanath S, Sundar A, Liu X Y, Azcatl A, Lochocki E, Woll A R, Rouvimov S, Hwang W S, Lu N, Peng X, Lien H H, Weisenberger J, McDonnell S, Kim M J, Dobrowolska M, Furdyna J K, Shen K, Wallace R M, Jena D and Xing H G 2017 J. Cryst. Growth 482 61
|
[29] |
Tang S J, Zhang C F, Jia C J, Ryu H, Hwang C, Hashimoto M, Lu D H, Liu Z, Devereaux T P, Shen Z X and Mo S K 2018 APL Mater. 6 026601
|
[30] |
Diaz H C, Chaghi R, Ma Y J and Batzill M 2015 2D Mater. 2 040010
|
[31] |
Wang Q Y, Zhang W H, Wang L L, He K, Ma X C and Xue Q K 2013 J. Phys.: Condens. Matter 25
|
[32] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[33] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[34] |
Koma A, Sunouchi K and Miyajima T 1984 J. Vac. Sci. Technol. B 3 724
|
[35] |
Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C h, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M and Schaak R E 2016 Angew. Chem. Int. Ed. 55 2830
|
[36] |
Ruppert C, Aslan O B and Heinz T F 2014 Nano Lett. 11 6231
|
[37] |
Zhang H Y, Bao C H, Jiang Z Y, Zhang K N, Li H, Chen C Y, Wu Y, Duan W H, Asensio M C and Zhou S Y 2018 Nano Lett. 18 4664
|
[38] |
Zheng F P, Cai C Y, Ge S F, Zhang X F, Liu X, Lu H, Zhang Y D, Qiu J, Taniguchi T, Watanabe K, Jia S, Qi J S, Chen J H, Sun D and Feng J 2016 Adv. Mater. 28 4845
|
[39] |
Yang J J, Colen J, Liu J, Nguyen M C, Chern G W and Louca D 2017 Sci. Adv. 3 eaao4949
|
[40] |
Kim H J, Kang S H, Hamada I and Son Y W 2017 Phys. Rev. B 95 180101
|
[41] |
Dai X, Le C, Wu X X and Qin S S 2016 Chin. Phys. Lett. 33 127301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|