Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030702    DOI: 10.1088/1674-1056/28/3/030702
GENERAL Prev   Next  

Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center

Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Diamond negatively charged nitrogen-vacancy (NV-) centers provide an opportunity for the measurement of the Meissner effect on extremely small samples in a diamond anvil cell (DAC) due to their high sensitivity in detecting the tiny change of magnetic field. We report on the variation of magnetic field distribution in a DAC as a sample transforms from normal to superconducting state by using finite element analysis. The results show that the magnetic flux density has the largest change on the sidewall of the sample, where NV- centers can detect the strongest signal variation of the magnetic field. In addition, we study the effect of magnetic coil placement on the magnetic field variation. It is found that the optimal position for the coil to generate the greatest change in magnetic field strength is at the place as close to the sample as possible.

Keywords:  negatively charged nitrogen-vacancy (NV-) centers      diamond anvil cell      superconductivity      magnetic field detection  
Received:  28 November 2018      Revised:  09 January 2019      Published:  05 March 2019
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  74.20.-z (Theories and models of superconducting state)  
  02.70.Dh (Finite-element and Galerkin methods)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305900) and the National Natural Science Foundation of China (Grant Nos. 11774126, 11674404, and 51772125).

Corresponding Authors:  Yonghao Han     E-mail:  hanyh@jlu.edu.cn

Cite this article: 

Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓) Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center 2019 Chin. Phys. B 28 030702

[1] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[2] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[3] Troyan I, Gavriliuk A, Rüffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P and Eremets M I 2016 Science 351 1303
[4] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[5] Yao Y and Tse J S 2018 Chemistry 24 1769
[6] Pickett W E 2007 J. Supercond. Novel Magn. 19 291
[7] Takano Y, Takeya H, Fujii H, Kumakura H, Hatano T, Togano K, Kito H and Ihara H 2001 Appl. Phys. Lett. 78 2914
[8] Waxman A, Schlussel Y, Groswasser D, Acosta V M, Bouchard L S, Budker D and Folman R 2014 Phys. Rev. B 89 054509
[9] Yang J, Peng G, Han Y H and Gao C X 2011 AIP Adv. 1 032116
[10] Huang X W, Gao C X, Han Y H, Li M, He C, Hao A, Zhang D, Yu C, Zou G and Ma Y 2007 Appl. Phys. Lett. 90 242102
[11] Huang X W, Gao C X, Li M, He C, Hao A, Zhang D, Yu C, Wang Y, Sang C, Cui X and Zou G T 2007 J. Appl. Phys. 101 064904
[12] Bouchard L S, Acosta V M, Bauch E and Budker D 2011 New J. Phys. 13 025017
[13] Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H and Lv H J 2018 Chin. Phys. B 27 057602
[14] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C and Prawer S 2014 Phys. Rev. Lett. 112 047601
[15] Hall L T, Kehayias P, Simpson D A, Jarmola A, Stacey A, Budker D and Hollenberg L C 2016 Nat. Commun. 7 10211
[16] Steinert S, Dolde F, Neumann P, Aird A, Naydenov B, Balasubramanian G, Jelezko F and Wrachtrup J 2010 Rev. Sci. Instrum. 81 043705
[17] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648
[18] Hong S, Grinolds M S, Pham L M, Le Sage D, Luan L, Walsworth R L and Yacoby A 2013 MRS Bull. 38 155
[19] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E and Awschalom D D 2010 Appl. Phys. Lett. 96 092504
[20] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[21] Wickenbrock A, Zheng H, Bougas L, Leefer N, Afach S, Jarmola A, Acosta V M and Budker D 2016 Appl. Phys. Lett. 109 053505
[22] Yue D H, Ji T T, Qin T R, Wang J, Liu C L, Jiao H, Zhao L, Han Y H and Gao C X 2018 Appl. Phys. Lett. 112 081901
[23] Joshi K R, Nusran N M, Cho K, Tanatar M A, Meier W R, Bud'ko S L, Canfield P C and Prozorov R 2019 Phys. Rev. Applied 11 014035
[1] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[2] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[3] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[4] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[5] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[6] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[7] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[10] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[11] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[12] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[13] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[14] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[15] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
No Suggested Reading articles found!