Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 018503    DOI: 10.1088/1674-1056/28/1/018503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer

Lin-Yuan Wang(王林媛)1, Wei-Dong Song(宋伟东)1, Wen-Xiao Hu(胡文晓)1, Guang Li(李光)1, Xing-Jun Luo(罗幸君)1, Hu Wang(汪虎)1, Jia-Kai Xiao(肖稼凯)1, Jia-Qi Guo(郭佳琦)1, Xing-Fu Wang(王幸福)1, Rui Hao(郝锐)3, Han-Xiang Yi(易翰翔)3, Qi-Bao Wu(吴启保)2, Shu-Ti Li(李述体)1
1 Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China;
2 School of Intelligent Manufacture and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
3 Guangdong Deli Semiconductor Co., Ltd, Jiangmen 529000, China
Abstract  

AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency. The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-AlxGa1-xN has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-AlxGa1-xN, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.

Keywords:  AlGaN      ultraviolet light-emitting diodes      polarization-doped p-type layer  
Received:  28 June 2018      Revised:  13 September 2018      Published:  05 January 2019
PACS:  85.60.Jb (Light-emitting devices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.20.Bh (Theory, models, and numerical simulation)  
  87.16.ad (Analytical theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61874161 and 11474105), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2017B010127001 and 2015B010105011), the Education Department Project of Guangdong Province, China (Grant No. 2017KZDXM022), the Science and Technology Project of Guangzhou City, China (Grant No. 201607010246), the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13064), the Science and Technology Project of Shenzhen City, China (Grant No. GJHZ20180416164721073), and the Science and Technology Planning of Guangdong Province, China (Grant No. 2015B010112002).

Corresponding Authors:  Qi-Bao Wu, Shu-Ti Li     E-mail:  wuqb@sziit.edu.cn;lishuti@scnu.edu.cn

Cite this article: 

Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体) Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer 2019 Chin. Phys. B 28 018503

[1] Hirayama H, Yatabe T, Noguchi N, Ohashi T and Kamata N 2007 Appl. Phys. Lett. 91 091101
[2] Hirayama H, Noguchi N, Yatabe T and Kamata N 2009 Int. J. Surg. 7 180
[3] Piprek J 2012 Opt. Quantum Electron. 44 67
[4] Zhang Y, Krishnamoorthy S, Akyol F, Allerman A A, Moseley M W, Armstrong A M and Rajan S 2016 Appl. Phys. Lett. 109 082101
[5] Pimputkar S, Speck J S, Denbaars S P and Nakamura S 2009 Nat. Photon. 3 180
[6] Bao X, Sun P, Liu S, Ye C, Li S and Kang J 2015 IEEE Photon. J. 7 1
[7] Lin B C, Wang C H, Lin C C, Chiu C H, Kuo H C, Chen K J, Shih M H, Lee P T, Kuo Y K and Lan Y P 2014 Opt. Express 22 463
[8] Zhang Z H, Tiam T S, Kyaw Z, Liu W, Ji Y, Ju Z, Zhang X, Wei S X and Volkan D H 2013 Appl. Phys. Lett. 103 263501
[9] Lei Y, Liu Z Q, He M, Yi X Y, Wang J X, Li J M, Zheng S W and Li S T 2015 J. Semicond. 36 054006
[10] Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 058502
[11] Zhang Y, Yu L, Li K, Pi H, Diao J, Wang X, Shen Y, Zhang C, Hu W and Song W 2015 Superlattices Microstruct. 82 151
[12] Hu W X, Qin P, Song W D, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A and Li S T 2016 S Superlattices Microstruct. 97 353
[13] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
[14] Gao L, Xie F and Yang G 2014 Superlattices Microstruct. 71 1
[15] Zhang L, Wei X C, Liu N X, Lu H X, Zeng J P, Wang J X, Zeng Y P and Li J M 2011 Appl. Phys. Lett. 98 101110
[16] Kuo Y K, Chang J Y, Chang H T, Chen F M, Shih Y H and Liou B T 2017 IEEE J. Quantum Electron. 53 1
[17] Khokhlev O V, Bulashevich K A and Karpov S Y 2013 Phys. Status Solidi 210 1369
[18] Li Y, Chen S, Tian W, Wu Z, Fang Y, Dai J and Chen C 2013 IEEE Photon. J. 5 8200309
[1] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[2] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[3] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[4] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[5] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[6] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[7] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[8] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[9] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[10] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰), Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[11] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[12] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[13] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[14] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[15] Recent advances in Ga-based solar-blind photodetectors
Ming-sheng Xu(徐明升), Lei Ge(葛磊), Ming-ming Han(韩明明), Jing Huang(黄静), Hua-yong Xu(徐化勇), Zai-xing Yang(杨再兴). Chin. Phys. B, 2019, 28(2): 028502.
No Suggested Reading articles found!