Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016104    DOI: 10.1088/1674-1056/28/1/016104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I

Ting-Ting Yan(颜婷婷)1, Dong-Yang Xi(喜冬阳)2, Jun-Hai Wang(王俊海)3, Xu-Feng Fan(樊旭峰)1, Ye Wan(万晔)2, Li-Xiu Zhang(张丽秀)3, Kai Wang(王凯)4
1 School of Science, Shenyang Jianzhu University, Shenyang 110168, China;
2 School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
3 Analysis and Detection Technology Research Center, Shenyang Jianzhu University, Shenyang 110168, China;
4 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Diamond anvil cells combined with Raman spectroscopy and angle-dispersive x-ray diffraction (ADXRD) were used to investigate the compression behavior of cinchomeronic acid (C7H5NO4, CA), a hydrogen-bonded polymorphs. The compression of form-I at approximately 6.5 GPa caused an irreversible phase transition that produced the new polymorph form-Ⅲ. Lattice and internal modes in the Raman spectra were analyzed to determine the modifications in the local environment of CA form-I molecules. The form-Ⅲ was indexed and refined to a low-symmetry triclinic structure with space group P1. The mechanism for the phase transition involved the reconstructions in the hydrogen-bonded networks in CA form-I.

Keywords:  phase transformations      pressure      vibrational spectroscopy      x-ray diffraction  
Received:  07 November 2018      Revised:  08 November 2018      Published:  05 January 2019
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  82.80.Gk (Analytical methods involving vibrational spectroscopy)  
  61.05.cp (X-ray diffraction)  
  64.70.K (Solid-solid transitions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604224, 51805336, and 11774120), the Open Project of State Key Laboratory of Superhard Materials of Jilin University, China (Grant No. 201708), the Natural Science Foundation of Liaoning Province, China (Grant No. 20180550861), the Education Department of Liaoning Province, China (Grant Nos. LJZ2016031 and LJZ2016030), and Shenyang Jianzhu University Discipline Content Education, China (Grant Nos. XKHY2-105 and XKHY2-101).

Corresponding Authors:  Ting-Ting Yan     E-mail:  yantt1120@163.com

Cite this article: 

Ting-Ting Yan(颜婷婷), Dong-Yang Xi(喜冬阳), Jun-Hai Wang(王俊海), Xu-Feng Fan(樊旭峰), Ye Wan(万晔), Li-Xiu Zhang(张丽秀), Kai Wang(王凯) High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I 2019 Chin. Phys. B 28 016104

[1] McCrone W C 1965 Physics and Chemistry of the Organic Solid State Ⅱ, ed. Fox D, Labes M M and Weissberger A (New York: Interscience) pp. 725-767
[2] Morrow S I 1969 J. Chem. Educ. 46 580
[3] Wöhler F and Liebig J 1832 Ann. Der Pharm. 3 249
[4] David W I, Shankl, K, Pulham C R, Blagden, N, Davey R J and Song M 2005 Angew. Chem. Int. Ed. 44 7032
[5] Gavezzotti A and Filippini G 1995 J. Am. Chem. Soc. 117 12299
[6] Nangia A 2008 Acc. Chem. Res. 41 595
[7] Johnstone R, Lennie A, Parker S, Parsons S, Pidcock E, Richardson P, Warren J and Wood P 2010 CrystEngComm 12 1065
[8] Haleblian J and McCrone W J 1969 Pharm. Sci. 58 911
[9] Yu L, Reutzel S M and Stephenson G A 1998 Pharm. Sci. Technol. Today 1 118
[10] Fabbiani F P A, Allan D R, David W I F, Moggach S A, Parsons S and Pulham C R 2004 CrystEngComm 6 504
[11] Yan T T, Wang K, Duan D F, Tan X, Liu B B and Zou B 2014 RSC Adv. 4 15534
[12] Walker M, Morrison C A, Allan D R, Pulham C R and Marshall W G 2007 Dalton Trans. 20 2014
[13] Yan T T, Xi D Y, Ma Z N, Fan X F and Li Y 2017 J. Phys. Chem. C 121 19365
[14] Allan D R and Clark S J 1999 Phys. Rev. Lett. 82 3464
[15] Yan T T, Xi D Y, Ma Z N, Wang X, Wang Q J and Li Q 2017 RSC Adv. 7 22105
[16] Minkov V S, Goryainov S V, Boldyreva E V and Görbitz C H 2010 J. Raman Spectrosc. 41 1748
[17] Yan T T, Wang K, Tan X, Yang K, Liu B B and Zou B 2014 J. Phys. Chem. C 118 15162
[18] Boldyreva E V, Ahsbahs H, Uchtmann H and Kashcheeva N 2000 High Press. Res. 17 79
[19] Fabbiani F P A and Pulham C R 2006 Chem. Soc. Rev. 35 932
[20] Wang Z and Georgakis C 2017 Aiche J. 63 2796
[21] Okumura T, Ishida M, Takayama K and Otsuka M 2006 J. Pharm. Sci. 95 689
[22] Yan T T, Wang K, Tan X, Liu J, Liu B B and Zou B 2014 J. Phys. Chem. C 118 22960
[23] Laniel D, Downie L E, Smith J S, Savard D, Murugesu M and Desgreniers S 2014 J. Chem. Phys. 141 234506
[24] Griffiths P J 1963 Acta Crystallogr. 19 1074
[25] Takusagawa F, Hirotsu K and Shimada A 1973 Bull. Chem. Soc. Jpn. 46 2669
[26] Braga D, Maini L, Fagnano C, Taddei P, Chierotti M R and Gobettb R 2007 Chem. Eur. J. 13 1222
[27] Karabacak M, Bilgili S and Atac A 2015 Spectrochim. Acta A 135 270
[28] Evans I R, Howard J A K and Evans J S O 2008 CrystEngComm 10 1404
[29] Tong M L, Wang J, Hu S and Batten S R 2005 Inorg. Chem. Commun. 8 48
[30] Senevirathna M K I, Pitigala P, Perera V P S and Tennakone K 2005 Langmuir 21 2997
[31] Errandonea D, Muñoz A and Gonzalez P J 2014 J. Appl. Phys. 115 216101
[32] Chijioke D A, Nellis J W, Soldatov A and Silvera I F 2005 J. Appl. Phys. 98 114905
[33] Park T R, Dreger Z A and Gupta Y M 2004 J. Phys. Chem. B 108 3174
[34] Ciezak J A, Jenkins T A, Liu Z and Hemley R J 2007 J. Phys. Chem. A 111 59
[35] Hamann S D and Linton M 1976 Aust. J. Chem. 29 1641
[36] Lin Y, Ma H W, Matthews C W, Kolb B, Sinogeikin S, Thonhauser T and Mao W L 2012 J. Phys. Chem. C 116 2172
[37] Yan T T, Li S R, Wang K, Tan X, Jiang Z M, Yang K, Liu B B, Zou G T and Zou B 2012 J. Phys. Chem. B 116 9796
[38] Wang K, Liu J, Yang K, Liu B B and Zou B 2014 J. Phys. Chem. C 118 8122
[39] Salinas S R and Nagle J F 1974 Phys. Rev. B 9 4920
[1] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
[2] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[5] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[6] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
[7] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[8] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[9] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[10] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[11] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[12] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[13] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[14] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[15] Synthesis, structure, and properties of Ba9Co3Se15 with one-dimensional spin chains
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Li-Peng Cao(曹立朋), Wen-Min Li(李文敏), Run-Ze Yu(于润泽), Zheng Deng(邓正), Chang-Qing Jin(靳常青). Chin. Phys. B, 2020, 29(3): 036102.
No Suggested Reading articles found!