Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098801    DOI: 10.1088/1674-1056/27/9/098801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Potentials of classical force fields for interactions between Na+ and carbon nanotubes

De-Yuan Li(李德远)1,2, Guo-Sheng Shi(石国升)1,2, Feng Hong(洪峰)1, Hai-Ping Fang(方海平)1,2
1 Department of Physics and Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China;
2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a crucial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here, using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+ with (7,7), (8,8), (9,9), and (10,10)-type CNTs. These potentials can be directly used in current popular classical software such as nanoscale molecular dynamics (NAMD) by employing the tclBC interface. By incorporating the potential of hydrated cation-π interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accumulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.

Keywords:  carbon nanotube      density functional theory      force field      molecular dynamics simulation  
Received:  11 May 2018      Revised:  07 June 2018      Published:  05 September 2018
PACS:  88.30.rh (Carbon nanotubes)  
  31.15.E (Density-functional theory)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: 
Project supported by the National Science Fund for Outstanding Young Scholars of China (Grant No. 11722548) and the National Natural Science Foundation of China (Grant Nos. 11574339 and 11404361).
Corresponding Authors:  Guo-Sheng Shi, Feng Hong     E-mail:  gsshi@shu.edu.cn;fenghong@shu.edu.cn

Cite this article: 

De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平) Potentials of classical force fields for interactions between Na+ and carbon nanotubes 2018 Chin. Phys. B 27 098801

[1] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J and Mayes A M 2008 Nature 452 301
[2] Elimelech M and Phillip W A 2011 Science 333 712
[3] Liu J, Shi G S, Guo P, Yang J R and Fang H P 2015 Phys. Rev. Lett. 115 164502
[4] Whitby M and Quirke N 2007 Nat. Nanotechnol. 2 87
[5] Liu J, Shi G S and Fang H P 2017 Nanotechnology 28 084004
[6] Moradi F, Ganji M D and Sarrafi Y 2017 Phys. Chem. Chem. Phys. 19 8388
[7] Wan R Z, Li J Y, Lu H J and Fang H P 2005 J. Am. Chem. Soc. 127 7166
[8] Li J Y, Gong X J, Lu H J, Li D, Fang H P and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[9] Vuković L, Vokac E and Král P 2014 J. Phys. Chem. Lett. 5 2131
[10] Bocquet L and Charlaix E 2010 Chem. Soc. Rev. 39 1073
[11] Su J Y, Zhao Y Z, Fang C, Ahmed S B and Shi Y 2017 Phys. Chem. Chem. Phys. 19 22406
[12] Qin X C, Yuan Q Z, Zhao Y P, Xie S B and Liu Z F 2011 Nano Lett. 11 2173
[13] Howorka S and Siwy Z 2009 Chem. Soc. Rev. 38 2360
[14] Bianco A, Kostarelos K and Prato M 2005 Curr. Opin. Chem. Biol. 9 674
[15] Zang J L, Yuan Q Z, Wang F C and Zhao Y P 2009 Comput. Mater. Sci. 46 621
[16] Hilder T A and Hill J M 2009 Small 5 300
[17] Tasis D, Tagmatarchis N, Bianco A and Prato M 2006 Chem. Rev. 106 1105
[18] Meng S, Wang W L, Maragakis P and Kaxiras E 2007 Nano Lett. 7 2312
[19] Zhao Y and Truhlar D G 2007 J. Am. Chem. Soc. 129 8440
[20] Yuan Q Z and Zhao Y P 2009 Biomicrofluidics 3 6
[21] Yuan Q Z and Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[22] Garcia-Fandiño R and Sansom M S P 2012 Proc. Natl. Acad. Sci. USA 109 6939
[23] Yang L H, Gordon V D, Trinkle D R, Schmidt N W, Davis M A, DeVries C, Som A, Cronan J E, Tew G N and Wong G C L 2008 Proc. Natl. Acad. Sci. USA 105 20595
[24] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[25] Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
[26] Striolo A 2006 Nano Lett. 6 633
[27] Tu Y S, Xiu P, Wan R Z, Hu J, Zhou R H and Fang H P 2009 Proc. Natl. Acad. Sci. USA 106 18120
[28] Falk K, Sedlmeier F, Joly L, Netz R R and Bocquet L 2010 Nano Lett. 10 4067
[29] Majumder M, Chopra N, Andrews R and Hinds B J 2005 Nature 438 44
[30] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[31] Corry B 2008 J. Phys. Chem. B 112 1427
[32] Jia Y X, Li H L, Wang M, Wu L Y and Hu Y D 2010 Sep. Purif. Technol. 75 55
[33] Secchi E, Marbach S, Nigues A, Stein D, Siria A and Bocquet L 2016 Nature 537 210
[34] Lee C Y, Choi W, Han J and Strano M S 2010 Science 329 1320
[35] Choi W, Lee C Y, Ham M, Shimizu S and Strano M S 2011 J. Am. Chem. Soc. 133 203
[36] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[37] Frisch G W T M J, Schlegel H B, Scuseria G E, et al. 2009 Gaussian 09 (Revision A. 01) (Wallingford CT:Gaussian Inc)
[38] Shi G S, Ding Y H and Fang H P 2012 J. Comput. Chem. 33 1328
[39] Shi G S, Chen L, Yang Y Z, Li D Y, Qian Z, Liang S S, Yan L, Li L H, Wu M H and Fang H P 2018 Nat. Chem. 10 776
[40] Gao S H, Shi G S and Fang H P 2016 Nanoscale 8 1451
[41] Chen L, Shi G S, Shen J, Peng B, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y and Fang H P 2017 Nature 550 380
[42] Shi G S, Dang Y R, Pan T T, Liu X, Liu H, Li S X, Zhang L J, Zhao H W, Li S P, Han J G, Tai R Z, Zhu Y M, Li J C, Ji Q, Mole R A, Yu D H and Fang H P 2016 Phys. Rev. Lett. 117 238102
[43] Lyu G X, Shi G S, Tang L, Fang H P and Wu M H 2017 Phys. Chem. Chem. Phys. 19 9354
[44] Shi G S, Yang J R, Ding Y H and Fang H P 2014 ChemPhysChem. 15 2588
[45] Yang J R, Shi G S, Tu Y S and Fang H P 2014 Angew. Chem. Int. Ed. 53 10190
[46] Shi G S, Liu J, Wang C L, Song B, Tu Y S, Hu J and Fang H P 2013 Sci. Rep. 3 3436
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[9] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[12] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[13] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[14] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[15] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
No Suggested Reading articles found!