Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098504    DOI: 10.1088/1674-1056/27/9/098504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ

Mao-Sen Yang(杨茂森)1, Liang Fang(方粮)1, Ya-Qing Chi(池雅庆)2
1 State Key Laboratory of High-Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China;
2 Institute of Microelectronics, College of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  

We investigate the dependence of the switching process on the perpendicular magnetic anisotropy (PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions (P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants:vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.

Keywords:  magnetic tunnel junction      perpendicular magnetic anisotropy      vortex state      micromagnetic simulation  
Received:  01 May 2018      Revised:  07 June 2018      Accepted manuscript online: 
PACS:  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  75.78.Cd (Micromagnetic simulations ?)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61332003) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3024).

Corresponding Authors:  Liang Fang     E-mail:  lfang@nudt.edu.cn

Cite this article: 

Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆) Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ 2018 Chin. Phys. B 27 098504

[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1-L7
[2] Berger L 1996 Phys. Rev. B 54 9353
[3] Kawahara T, Ito K, Takemura R and Ohno H 2012 Microelectron. Reliab. 52 613
[4] Tang Z, Fang L, Xu N and Liu R 2015 J. Appl. Phys. 118 185309
[5] Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C, Nagao H and Kano H 2005 Proceedings of the IEEE International Electron Devices Meeting, December 5-5, 2005, Washington DC, USA, pp. 459-462
[6] Tang Z, Chi Y, Fang L, Liu R and Yi X 2014 J. Nanosci. Nanotech. 14 1494
[7] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[8] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[9] Nakayama M, Kai T, Shimomura N, Amano M, Kitagawa E, Nagase T, Yoshikawa M, Kishi T, Ikegawa S and Yoda H 2008 J. Appl. Phys. 103 07A710
[10] Ikeda S, Hayakawa J, Lee Y M, Matsukura F, Ohno Y, Hanyu T and Ohno H 2007 IEEE Trans. Electron Dev. 54 991
[11] You C Y and Jung M 2013 J. Appl. Phys. 113 073904
[12] Sun J Z, Trouilloud P L, Gajek M J, Nowak J, Robertazzi R P, Hu G, Abraham D W, Gaidis M C, Brown S L, O'Sullivan E J, Gallagher W J and Worledge D C 2012 J. Appl. Phys. 111 07C711
[13] Sun J Z, Robertazzi R P, Nowak J, Trouilloud P L, Hu G, Abraham D W, Gaidis M C, Brown S L, O'Sullivan E J, Gallagher W J and Worledge D C 2011 Phys. Rev. B 84 064413
[14] Chenchen J W, Akhtar M A K B, Sbiaa R, Hao M, Sunny L Y H, Kai W S, Ping L, Carlberg P and Arthur A K S 2012 Jap. J. Appl. Phys. 51 013101
[15] Liu Y, Zhu K G, Zhong H C, Zhu Z Y, Yu T and Ma S D 2016 Chin. Phys. B 25 117805
[16] Liu N, Wang H and Zhu T 2012 Acta Phys. Sin. 61 167504
[17] Ju H L, Wang H X, Cheng P, Li B H, Chen X B, Liu S Y and Yu G H 2016 Acta Phys. Sin 65 247502
[18] Zhang Y, Zhao W S, Lakys Y, Klein J O, Kim J V, Ravelosona D and Chappter C 2012 IEEE Trans. Electron Dev. 59 819
[19] Panagopoulos G, Augustine C and Roy K 2012 Proceedings of the IEEE Design, Automation & Test in Europe Conference & Exhibition, March 12-16, 2012, Dresden, Germany, pp. 1443-1446
[20] Donahue M J and Porter D G:OOMMF User's Guide,Ver. 1.0, Interagency Report NISTIR 6376, NIST, USA(1999).
[21] You C Y 2012 J. Magn. 17 73
[22] You C Y 2014 J. Appl. Phys. 115 043914
[23] You C Y 2013 J. Magn. 18 380
[24] Kim J S, Kläui M, Fistul M V, Yoon J, You C Y, Mattheis R, Ulysse C and Faini G 2013 Phys. Rev. B 88 064402
[25] Kim J S, Boulle O, Verstoep S, Heyne L, Rhensius J, Kläui M, Heyderman L J, Kronast F, Mattheis R, Ulysse C and Faini G 2010 Phys. Rev. B 82 104427
[26] Kasai S, Nakatani Y, Kobayashi K, Kohno H and Ono T 2006 Phys. Rev. Lett. 97 107204
[27] Kim J Y and Choe S B 2007 J. Magn. 12 113
[28] Su Y C, Lei H Y and Hu J G 2015 Chin. Phys. B 24 097506
[29] Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M and Finocchio G 2016 Phys. Rev. Lett. 117 087204
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[3] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[4] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[5] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[6] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[7] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[8] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[9] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[12] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[13] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[14] Detection of HIV-1 antigen based on magnetic tunnel junction sensors
Li Li(李丽), Kai-Yu Mak(麦启宇), Yan Zhou(周艳). Chin. Phys. B, 2020, 29(8): 088701.
[15] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
No Suggested Reading articles found!