Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097504    DOI: 10.1088/1674-1056/27/9/097504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition

Qeemat Gul1,2, Wei He(何为)1,2, Yan Li(李岩)1,2, Rui Sun(孙瑞)1,2, Na Li(李娜)1,2, Xu Yang(杨旭)1,2, Yang Li(李阳)1,2, Zi-Zhao Gong(弓子召)1,2, ZongKai Xie(谢宗凯)1,2, Xiang-Qun Zhang(张向群)1, Zhao-Hua Cheng(成昭华)1,2
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The uniaxial magnetic anisotropy of obliquely deposited Fe(001)/Pd film on MgO(001) substrate is investigated as a function of deposition angle and film thickness. The values of incidence angle of Fe flux relative to surface normal of the substrate are 0°, 45°, 55°, and 70°, respectively. In-situ low energy electron diffraction is employed to investigate the surface structures of the samples. The Fe film thicknesses are determined to be 50 ML, 45 ML, 32 ML, and 24 ML (1 ML=0.14 nm) by performing x-ray reflectivity on the grown samples, respectively. The normalized remanent magnetic saturation ratio and coercivity are obtained by the longitudinal surface magneto-optical Kerr effect. Here, the magnetic anisotropy constants are quantitatively determined by fitting the anisotropic magnetoresistance curves under different fields. These measurements show four-fold cubic anisotropy in a large Fe film thickness (50 ML) sample, but highly in-plane uniaxial magnetic anisotropies in thin films (24 ML and 32 ML) samples. In the obliquely deposited Fe films, the coercive fields and the uniaxial magnetic anisotropies (UMAs) increase as the deposition angle becomes more and more tilted. In addition, the UMA decreases with the increase of the Fe film thickness. Our work provides the possibility of manipulating uniaxial magnetic anisotropy, and paves the way to inducing UMA by oblique deposition with smaller film thickness.

Keywords:  iron thin films      oblique deposition      magnetic anisotropy      magnetoresistance  
Received:  06 June 2018      Revised:  30 June 2018      Accepted manuscript online: 
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.30.Gw (Magnetic anisotropy)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212), and the Chinese Government Scholarship (Grant No. 2015GXYG37).

Corresponding Authors:  Zhao-Hua Cheng     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition 2018 Chin. Phys. B 27 097504

[1] Chowdhury N and Bedanta S 2014 AIP Adv. 4 027104
[2] Knorr T G and Hoffman R W 1959 Phys. Rev. 113 1039
[3] Smith D O 1959 J. Appl. Phys. 30 S5264
[4] Chiba K, Sato K, Ebine Y and Sasaki T 1989 IEEE Trans. Consum. Electron. 35 421
[5] West F G 1964 J. Appl. Phys. 35 1827
[6] Hashimoto T, Hara K, Okamoto K, Hashimoto T and Fujiwara H 1973 J. Phys. Soc. Jpn. 34 1415
[7] Hoshi Y, Suzuki E and Naoe M 1996 J. Appl. Phys. 79 4945
[8] Alameda J M, Carmona F, Salas F H, Alvarez-Prado L M, Morales R and Perez G T 1996 J. Magn. Magn. Mater. 154 249
[9] McMichael R D, Lee C G, Bonevich J E, Chen P J, Miller W, Egelhoff W F 2000 J. Appl. Phys. 88 5296
[10] Hadley M J and Pollard R J 2002 J. Appl. Phys. 92 7389
[11] Zhao Z, Mani P, Mankey G J, Gubbiotti G, Tacchi S, Spizzo F, Lee W T, Yu C T and Pechan M J 2005 Phys. Rev. B 71 104417
[12] Umlor M T 2005 Appl. Phys. Lett. 87 082505
[13] Fukuma Y, Lu Z, Fujiwara H, Mankey G J, Butler W H and Matsunuma S 2009 J. Appl. Phys. 106 076101
[14] Chi C S, Wang B Y, Pong W F, Ho T Y, Tsai C J, Lo F Y, Chern M Y and Lin W C 2012 J. Appl. Phys. 111 123918
[15] Hillebrands B, Boufelfel A, Falco C M, Baumgart P, Güntherodt G, Zirngiebl E and Thompson J D 1988 J. Appl. Phys. 63 3880
[16] Engel B N, Wiedmann M H, Van Leeuwen P A and Falco C M 1993 Phys. Rev. B 48 9894
[17] Beauvillain P, Bounouh A, Chappert C, Megy R, Ould-Manfoud S, Renardt J P, Viellet P, Weller D and Corno J 1994 J. Appl. Phys. 76 6078
[18] Schumann F O, Buckley M E, Bl and J A C 1994 J. Appl. Phys. 76 6078
[19] Rezende S M, Moura J A S, De Aguiar F M and Schreiner W H 1994 Phys. Rev. B 49 15105
[20] Yaegashi S, Kurihara T and Satoh K 1997 J. Appl. Phys. 81 6303
[21] Mattheis R and Quednau G 1999 J. Magn. Magn. Mater. 205 143
[22] Garreau G, Hajjar S, Bubendorff J L, Pirri C, Berling D, Mehdaoui A, Stephan R, Wetzel P, Zabrocki S, Gewinner G, Boukari S and Beaure paire E 2005 Phys. Rev. B 71 094430
[23] McGuire T R and Potter R I 1975 IEEE Trans. Mag. 11 1018
[24] Dahlberg E D, Riggs K and Prinz G A 1988 J. Appl. Phys. 63 4270
[25] Miller B H and Dahlberg E D 1996 Appl. Phys. Lett. 69 3932
[26] Krivorotov I N, Leighton C, Nogues J, Schuller I K and Dahlberg E D 2002 Phys. Rev. B 65 100402
[27] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
[28] Li J, Jin E, Son H, Tan A, Cao W N, Hwang C and Qiu Z Q 2012 Rev. Sci. Instrum. 83 033906
[29] Martínez Boubeta C, Clavero C, García-Martín J M, Armelles G, Cebollada A, Balcells Ll, Menéndez J L, Peiró F, Cornet A and Toney Michael F 2005 Phys. Rev. B 71 014407
[30] Zhan Qing-feng, Vandezande Stijn and Haesendonck Chris Van 2007 Appl. Phys. Lett. 91 122510
[31] Zhan Q F, Vandezande S, Kristiaan T and Haesendonck C V 2009 Phys. Rev. B 80 094416
[32] Spurgeon Steven R, Sloppy Jennifer D, Tao Runzhe, Klie Robert F, Lofl, Samuel E, Baldwin Jon K, Misra Amit and Taheri Mitra L 2012 J. Appl. Phys. 112 013905
[33] Lee S C, Kim K S, Lee S H, Pi U H, Kim K, Jang Y and Chung U I 2013 J. Appl. Phys. 113 023914
[34] Mallik S, Chowdhury N and Bedanta S 2014 AIP Adv. 4 097118
[35] Ma T P, Zhang S F, Yang Y, Chen Z H, Zhao H B and Wu Y Z 2015 J. Appl. Phys. 117 013903
[36] Kozioł-RachwałA, Slezak T, Nozaki T, Yuasa S and Korecki J 2016 Appl. Phys. Lett. 108 041606
[37] Du H F, He W, Liu H L, Fang Y P, Wu Q, Zou T, Zhang X Q, Sun Y and Cheng Z H 2010 Appl. Phys. Lett. 96 142511
[38] Liu H L, He W, Du H F, Fang Y P, Wu Q, Zhang X Q, Yang H T and Cheng Z H 2012 Chin. Phys. B 21 077503
[39] Urano T and Kanaji T 1988 J. Phys. Soc. Jpn. 57 3043
[40] Liu C, Park Y and Bader S D 1992 J. Magn. Magn. Mater. 111 L225
[41] Hu B, He W, Ye J, Tang J, Zhang Y S, Syed S A, Zhang X Q and Cheng Z H 2015 Chin. Phys. B 24 077502
[42] Zhan Q F, Vandezande S, Haesendonck C V and Temst K 2007 Appl. Phys. Lett. 91 122510
[43] Zhan Q F, Vandezande S, Temst K and Haesendonck C V 2009 Phys. Rev. B 80 094416
[44] Childress J R, Kergoat R, Durand O, George J M, Galtier P, Miltat J and Schuhl A 1994 J. Magn. Magn. Mater. 130 13
[45] Hu B, He W, Ye J, Tang J, Zhang Y S, Ahmad S S, Zhang X Q and Cheng Z H 2015 Sci. Rep. 5 14114
[46] Postava K, Jaffres H, Schuhl A, Nguyen Van Dau F, Goiran M and Fert A R 1997 J. Magn. Magn. Mater. 172 199
[47] Fang Y P, He W, Liu H L, Zhan Q F, Du H F, Wu Q, Yang H T, Zhang X Q and Cheng Z H 2010 Appl. Phys. Lett. 97 22507
[48] Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
[49] Wu D, Wei P, Johnston-Halperin E, Awschalom D D and Shi J 2008 Phys. Rev. B 77 125320
[50] Ye J, He W, Wu Q, Hu B, Tang J, Zhang X Q, Chen Z Y and Cheng Z H 2014 Appl. Phys. Lett. 105 102406
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[7] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[8] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[11] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[12] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[13] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[14] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[15] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
No Suggested Reading articles found!