Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090303    DOI: 10.1088/1674-1056/27/9/090303
GENERAL Prev   Next  

Entropy of field interacting with two two-qubit atoms

Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵)
College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
Abstract  

We use quantum field entropy to measure the degree of entanglement for a coherent state light field interacting with two atoms that are initially in an arbitrary two-qubit state. The influence of different mean photon number of the coherent field on the entropy of the field is discussed in detail when the two atoms are initially in one superposition state of the Bell states. The results show that the mean photon number of the light field can regulate the quantum entanglement between the atoms and light field.

Keywords:  quantum field entropy      coherent state light field      quantum entanglement  
Received:  09 February 2018      Revised:  25 June 2018      Published:  05 September 2018
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11404108).

Corresponding Authors:  Tang-Kun Liu     E-mail:  tkliu@hbnu.edu.cn

Cite this article: 

Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵) Entropy of field interacting with two two-qubit atoms 2018 Chin. Phys. B 27 090303

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Naturwissenschaften 23 807
[3] Bennett C H and Winsner S J 1992 Phys. Rev. Lett. 69 2881
[4] Bennett C H 1995 Phys. Today 48 24
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[7] Phoenix S J D and Knight P L 1988 Ann. Phys. 186 381
[8] Barnett S M and Phoenix S J D 1989 Phys. Rev. A 40 2404
[9] Phoenix S J D and Knight P L 1990 J. Opt. Soc. Am. B 7 116
[10] Phoenix S J D and Knight P L 1991 Phys. Rev. A 44 6023
[11] Fang M F and Zhou G H 1994 Phys. Lett. A. 184 397
[12] Fang M F 1994 Acta Phys. Sin. 43 1776 (in Chinese)
[13] Yi X X and Sun C P 1996 Chin. Sci. Bull. 41 1165
[14] Huang C J, He H Y, Li J F and Chou M 2002 Acta Phys. Sin. 51 1049 (in Chinese)
[15] Huang C J, He H Y, Chou M, Fang J Y and Huang Z H 2006 Acta Phys. Sin. 55 1764 (in Chinese)
[16] Jiao Z Y, Ma J M, Li N and Fu X 2009 Commun. Theor. Phys. 51 53
[17] Ren Q B, Chen Q H and Zhu W T 2016 Chin. Phys. Lett. 33 050302
[18] Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
[19] Liu T K, Wang J S, Feng J and Zhan M S 2005 Chin. Phys. 14 536
[20] Liu T K 2006 Chin. Phys. 15 542
[21] Tavis M and Cummings F W 1968 Phys. Rev. 170 379
[1] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[2] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[3] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[4] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[7] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[8] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[9] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[10] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[11] Extended Bell inequality and maximum violation
Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福). Chin. Phys. B, 2018, 27(10): 100303.
[12] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[13] Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms
Tang-Kun Liu(刘堂昆), Kang-Long Zhang(张康隆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2016, 25(7): 070304.
[14] Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation
Zhang Shi-Yang, Fang Mao-Fa, Zhang Yan-Liang, Guo You-Neng, Zhao Yan-Jun, Tang Wu-Wei. Chin. Phys. B, 2015, 24(9): 090304.
[15] Strong violations of locality by testing Bell's inequality with improved entangled-photon systems
Wang Yao, Fan Dai-He, Guo Wei-Jie, Wei Lian-Fu. Chin. Phys. B, 2015, 24(8): 084203.
No Suggested Reading articles found!