|
|
Decoherence for a two-qubit system in a spin-chain environment |
Yang Yang(杨阳)1, An-Min Wang(王安民)2, Lian-Zhen Cao(曹连振)1, Jia-Qiang Zhao(赵加强)1, Huai-Xin Lu(逯怀新)1 |
1 Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China;
2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The quantum coherence and correlation dynamics for a two-qubit system in the Ising spin-chain environment are studied. A sudden change of coherence is found near the critical point, which provides us with an effective way to detect the quantum phase transition. By studying the relationship between quantum discord and coherence, we find that coherence displays the behavior of classical correlation for t<t0, and of quantum discord for t>t0, where t0 is the time-point of a sudden transition between classical and quantum decoherence.
|
Received: 02 April 2018
Revised: 27 June 2018
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404246) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MF040). |
Corresponding Authors:
Yang Yang
E-mail: yangyang@mail.ustc.edu.cn
|
Cite this article:
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新) Decoherence for a two-qubit system in a spin-chain environment 2018 Chin. Phys. B 27 090302
|
[1] |
Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
|
[2] |
Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
|
[3] |
Rónagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
|
[4] |
Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
|
[5] |
Korzekwa K, Lostaglio M, Oppenheim J and Jennings D 2016 New J. Phys. 18 023045
|
[6] |
Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
|
[7] |
Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
|
[8] |
Huelga S F and Plenio 2013 Contemp. Phys. 54 181
|
[9] |
Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
|
[10] |
Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
|
[11] |
Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
|
[12] |
Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[13] |
Girolami D, Souza A M, Giovannetti V, Tufarelli T, Filgueiras J G, Sarthour R S, Soares-Pinto D O, Oliveira I S and Adesso D 2014 Phys. Rev. Lett. 112 210401
|
[14] |
Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
|
[15] |
Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
|
[16] |
Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
|
[17] |
Hu M L and Fan H 2017 Phys. Rev. A 95 052106
|
[18] |
Hou J X, Liu S Y,Wang X H and Yang W L 2017 Phys. Rev. A 96 042324
|
[19] |
Sun Y, Mao Y Y and Luo S L 2017 EPL 118 60007
|
[20] |
Fanchini F F, Werlang T, Brasil C A, ArrudaL G E and Caldeira A O 2010 Phys. Rev. A 81 052107
|
[21] |
Maziero J, Guzman H C, Ćeleri L C, Sarandy M S and Serra R 2010 Phys. Rev. A 82 012106
|
[22] |
Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
|
[23] |
Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
|
[24] |
Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
|
[25] |
He Q L, Xu J B, Yao D X and Zhang Y Q 2011 Phys. Rev. A 84 022312
|
[26] |
Yang Y and Wang A M 2014 Chin. Phys. B 23 020307
|
[27] |
Luo D W, Lin H Q, Xu J B and Yao D X 2011 Phys. Rev. A 84 062112
|
[28] |
Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
|
[29] |
Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
|
[30] |
Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
|
[31] |
Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira R S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402
|
[32] |
Hu M L and Fan H 2016 Sci. Rep. 6 29260
|
[33] |
Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
|
[34] |
Du M M, Wang D and Ye L 2017 Quantum Inf. Process 16 228
|
[35] |
Girolami D and Yadin B 2017 Entropy 19 124
|
[36] |
Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
|
[37] |
Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
|
[38] |
Yang Y, Wang A M, Cao L Z, Zhao J Q and Lu H X 2018 Chin. Phys. Lett. 35 080301
|
[39] |
Hu Z D, Wei M S, Wang J C, Zhang Y X and He Q L 2018 J. Phys. Soc. Jpn. 87 054002
|
[40] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[41] |
Dakić B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
|
[42] |
Sachdev S 1999 Quantum Phase Transition (Cambridge:Cambridge University Press)
|
[43] |
Pfeuty P 1979 Phys. Lett. A 72 245
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|